Водород образуется при взаимодействии веществ. Водород в природе (0,9% в Земной коре)

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.

  • Обозначение - H (Hydrogen);
  • Латинское название - Hydrogenium;
  • Период - I;
  • Группа - 1 (Ia);
  • Атомная масса - 1,00794;
  • Атомный номер - 1;
  • Радиус атома = 53 пм;
  • Ковалентный радиус = 32 пм;
  • Распределение электронов - 1s 1 ;
  • t плавления = -259,14°C;
  • t кипения = -252,87°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,02/-;
  • Степень окисления: +1; 0; -1;
  • Плотность (н. у.) = 0,0000899 г/см 3 ;
  • Молярный объем = 14,1 см 3 /моль.

Бинарные соединения водорода с кислородом:

Водород ("рождающий воду") был открыт английским ученым Г. Кавендишем в 1766 году. Это самый простой элемент в природе - атом водорода имеет ядро и один электрон, наверное, по этой причине водород является самым распространенным элементом во Вселенной (составляет более половины массы большинства звезд).

Про водород можно сказать, что "мал золотник, да дорог". Несмотря на свою "простоту", водород дает энергию всем живым существам на Земле - на Солнце идет непрерывная термоядерная реакция в ходе которой из четырех атомов водорода образуется один атом гелия, данный процесс сопровождается выделением колоссального количества энергии (подробнее см. Ядерный синтез).

В земной коре массовая доля водорода составляет всего 0,15%. Между тем, подавляющее число (95%) всех известных на Земле химических веществ содержат один или несколько атомов водорода.

В соединениях с неметаллами (HCl, H 2 O, CH 4 ...) водород отдает свой единственный электрон более электроотрицательным элементам, проявляя степень окисления +1 (чаще), образуя только ковалентные связи (см. Ковалентная связь).

В соединениях с металлами (NaH, CaH 2 ...) водород, наоборот, принимает на свою единственную s-орбиталь еще один электрон, пытаясь, таким образом, завершить свой электронный слой, проявляя степень окисления -1 (реже), образуя чаще ионную связь (см. Ионная связь), т. к., разность в электроотрицательности атома водорода и атома металла может быть достаточно большой.

H 2

В газообразном состоянии водород находится в виде двухатомных молекул, образуя неполярную ковалентную связь.

Молекулы водорода обладают:

  • большой подвижностью;
  • большой прочностью;
  • малой поляризуемостью;
  • малыми размерами и массой.

Свойства газа водорода:

  • самый легкий в природе газ, без цвета и запаха;
  • плохо растворяется в воде и органических растворителях;
  • в незначительных кол-вах растворяется в жидких и твердых металлах (особенно в платине и палладии);
  • трудно поддается сжижению (по причине своей малой поляризуемости);
  • обладает самой высокой теплопроводностью из всех известных газов;
  • при нагревании реагирует со многими неметаллами, проявляя свойства восстановителя;
  • при комнатной температуре реагирует со фтором (происходит взрыв): H 2 + F 2 = 2HF;
  • с металлами реагирует с образованием гидридов, проявляя окислительные свойства: H 2 + Ca = CaH 2 ;

В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Восстановительные свойства водорода широко используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов и галлидов.

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Реакции водорода с простыми веществами

Водород принимает электрон, играя роль восстановителя , в реакциях:

  • с кислородом (при поджигании или в присутствии катализатора), в соотношении 2:1 (водород:кислород) образуется взрывоопасный гремучий газ: 2H 2 0 +O 2 = 2H 2 +1 O+572 кДж
  • с серой (при нагревании до 150°C-300°C): H 2 0 +S ↔ H 2 +1 S
  • с хлором (при поджигании или облучении УФ-лучами): H 2 0 +Cl 2 = 2H +1 Cl
  • с фтором : H 2 0 +F 2 = 2H +1 F
  • с азотом (при нагревании в присутствии катализаторов или при высоком давлении): 3H 2 0 +N 2 ↔ 2NH 3 +1

Водород отдает электрон, играя роль окислителя , в реакциях с щелочными и щелочноземельными металлами с образованием гидридов металлов - солеобразные ионные соединения, содержащие гидрид-ионы H - - это нестойкие кристаллические в-ва белого цвета.

Ca+H 2 = CaH 2 -1 2Na+H 2 0 = 2NaH -1

Для водорода нехарактерно проявлять степень окисления -1. Реагируя с водой, гидриды разлагаются, восстанавливая воду до водорода. Реакция гидрида кальция с водой имеет следующий вид:

CaH 2 -1 +2H 2 +1 0 = 2H 2 0 +Ca(OH) 2

Реакции водорода со сложными веществами

  • при высокой температуре водород восстанавливает многие оксиды металлов: ZnO+H 2 = Zn+H 2 O
  • метиловый спирт получают в результате реакции водорода с оксидом углерода (II): 2H 2 +CO → CH 3 OH
  • в реакциях гидрогенизации водород реагирует с многими органическими веществами.

Более подробно уравнения химических реакций водорода и его соединений рассмотрены на странице "Водород и его соединения - уравнения химических реакций с участием водорода ".

Применение водорода

  • в атомной энергетике используются изотопы водорода - дейтерий и тритий;
  • в химической промышленности водород используют для синтеза многих органических веществ, аммиака, хлороводорода;
  • в пищевой промышленности водород применяют в производстве твердых жиров посредство гидрогенизации растительных масел;
  • для сварки и резки металлов используют высокую температуру горения водорода в кислороде (2600°C);
  • при получении некоторых металлов водород используют в качестве восстановителя (см. выше);
  • поскольку водород является легким газом, его используют в воздухоплавании в качестве наполнителя воздушных шаров, аэростатов, дирижаблей;
  • как топливо водород используют в смеси с СО.

В последнее время ученые уделяют достаточно много внимания поиску альтернативных источников возобновляемой энергии. Одним из перспективных направлений является "водородная" энергетика, в которой в качестве топлива используется водород, продуктом сгорания которого является обыкновенная вода.

Способы получения водорода

Промышленные способы получения водорода:

  • конверсией метана (каталитическим восстановлением водяного пара) парами воды при высокой температуре (800°C) на никелевом катализаторе: CH 4 + 2H 2 O = 4H 2 + CO 2 ;
  • конверсией оксида углерода с водяным паром (t=500°C) на катализаторе Fe 2 O 3: CO + H 2 O = CO 2 + H 2 ;
  • термическим разложением метана: CH 4 = C + 2H 2 ;
  • газификацией твердых топлив (t=1000°C): C + H 2 O = CO + H 2 ;
  • электролизом воды (очень дорогой способ при котором получается очень чистый водород): 2H 2 O → 2H 2 + O 2 .

Лабораторные способы получения водорода:

  • действием на металлы (чаще цинк) соляной или разбавленной серной кислотой: Zn + 2HCl = ZCl 2 + H 2 ; Zn + H 2 SO 4 = ZnSO 4 + H 2 ;
  • взаимодействием паров воды с раскаленными железными стружками: 4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 .

ОПРЕДЕЛЕНИЕ

Водород – первый элемент Периодической системы химических элементов Д.И. Менделеева. Символ – Н.

Атомная масса – 1 а.е.м. Молекула водорода двухатомна – Н 2 .

Электронная конфигурация атома водорода – 1s 1 . Водород относится к семейству s-элементов. В своих соединениях проявляет степени окисления -1, 0, +1. Природный водород состоит из двух стабильных изотопов – протия 1 Н (99,98%) и дейтерия 2 Н (D) (0,015%) – и радиоактивного изотопа трития 3 Н (Т) (следовые количества, период полураспада – 12,5 лет).

Химические свойства водорода

При обычных условиях молекулярный водород проявляет сравнительно низкую реакционную способность, что объясняется высокой прочностью связей в молекуле. При нагревании вступает во взаимодействие практически со всеми простыми веществами, образованными элементами главных подгрупп (кроме благородных газов, B, Si, P, Al). В химических реакциях может выступать как в роли восстановителя (чаще), так и окислителя (реже).

Водород проявляет свойства восстановителя (Н 2 0 -2е → 2Н +) в следующих реакциях:

1. Реакции взаимодействия с простыми веществами – неметаллами. Водород реагирует с галогенами , причем, реакция взаимодействия со фтором при обычных условиях, в темноте, со взрывом, с хлором – при освещении (или УФ-облучении) по цепному механизму, с бромом и йодом только при нагревании; кислородом (смесь кислорода и водорода в объемном отношении 2:1 называют «гремучим газом»), серой , азотом и углеродом :

H 2 + Hal 2 = 2HHal;

2H 2 + O 2 = 2H 2 O + Q (t);

H 2 + S = H 2 S (t = 150 – 300C);

3H 2 + N 2 ↔ 2NH 3 (t = 500C, p, kat = Fe, Pt);

2H 2 + C ↔ CH 4 (t, p, kat).

2. Реакции взаимодействия со сложными веществами. Водород реагирует с оксидами малоактивных металлов , причем он способен восстанавливать только металлы, стоящие в ряду активности правее цинка:

CuO + H 2 = Cu + H 2 O (t);

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O (t);

WO 3 + 3H 2 = W + 3H 2 O (t).

Водород реагирует с оксидами неметаллов :

H 2 + CO 2 ↔ CO + H 2 O (t);

2H 2 + CO ↔ CH 3 OH (t = 300C, p = 250 – 300 атм., kat = ZnO, Cr 2 O 3).

Водород вступает в реакции гидрирования с органическими соединениями класса циклоалканов, алкенов, аренов, альдегидов и кетонов и др. Все эти реакции проводят при нагревании, под давлением, в качестве катализаторов используют платину или никель:

CH 2 = CH 2 + H 2 ↔ CH 3 -CH 3 ;

C 6 H 6 + 3H 2 ↔ C 6 H 12 ;

C 3 H 6 + H 2 ↔ C 3 H 8 ;

CH 3 CHO + H 2 ↔ CH 3 -CH 2 -OH;

CH 3 -CO-CH 3 + H 2 ↔ CH 3 -CH(OH)-CH 3 .

Водород в качестве окислителя (Н 2 +2е → 2Н —) выступает в реакциях взаимодействия со щелочными и щелочноземельными металлами. При этом образуются гидриды – кристаллические ионные соединения, в которых водород проявляет степень окисления -1.

2Na +H 2 ↔ 2NaH (t, p).

Ca + H 2 ↔ CaH 2 (t, p).

Физические свойства водорода

Водород – легкий бесцветный газ, без запаха, плотность при н.у. – 0,09 г/л, в 14,5 раз легче воздуха, t кип = -252,8С, t пл = — 259,2С. Водород плохо растворим в воде и органически растворителях, хорошо растворим в некоторых металлах: никеле, палладии, платине.

По данным современной космохимии водород является самым распространенным элементом Вселенной. Основная форма существования водорода в космическом пространстве – отдельные атомы. По распространенности на Земле водород занимает 9 место среди всех элементов. Основное количество водорода на Земле находится в связанном состоянии – в составе воды, нефти, природного газа, каменного угля и т.д. В виде простого вещества водород встречается редко – в составе вулканических газов.

Получение водорода

Различают лабораторные и промышленные способы получения водорода. К лабораторным способам относят взаимодействие металлов с кислотами (1), а также взаимодействие алюминия с водными растворами щелочей (2). Среди промышленных способов получения водорода большую роль играют электролиз водных растворов щелочей и солей (3) и конверсия метана (4):

Zn + 2HCl = ZnCl 2 + H 2 (1);

2Al + 2NaOH + 6H 2 O = 2Na +3 H 2 (2);

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH (3);

CH 4 + H 2 O ↔ CO + H 2 (4).

Примеры решения задач

ПРИМЕР 1

Задание При взаимодействии 23,8 г металлического олова с избытком соляной кислоты выделился водород, в количестве, достаточном, чтобы получить 12,8 г металлической меди Определите степень окисления олова в полученном соединении.
Решение Исходя из электронного строения атома олова (…5s 2 5p 2) можно сделать вывод, что для олова характерны две степени окисления — +2, +4. На основании этого составим уравнения возможных реакций:

Sn + 2HCl = H 2 + SnCl 2 (1);

Sn + 4HCl = 2H 2 + SnCl 4 (2);

CuO + H 2 = Cu + H 2 O (3).

Найдем количество вещества меди:

v(Cu) = m(Cu)/M(Cu) = 12,8/64 = 0,2 моль.

Согласно уравнению 3, количество вещества водорода:

v(H 2) = v(Cu) = 0,2 моль.

Зная массу олова, найдем его количество вещества:

v(Sn) = m(Sn)/M(Sn) = 23,8/119 = 0,2 моль.

Сравним количества вещества олова и водорода по уравнения 1 и 2 и по условию задачи:

v 1 (Sn): v 1 (H 2) = 1:1 (уравнение 1);

v 2 (Sn): v 2 (H 2) = 1:2 (уравнение 2);

v(Sn): v(H 2) = 0,2:0,2 = 1:1 (условие задачи).

Следовательно, олово взаимодействует с соляной кислотой по уравнению 1 и степень окисления олова равна +2.

Ответ Степень окисления олова равна +2.

ПРИМЕР 2

Задание Газ, выделившийся при действии 2,0 г цинка на 18,7 мл 14,6%-ной соляной кислоты (плотность раствора 1,07 г/мл), пропустили при нагревании над 4,0 г оксида меди (II). Чему равна масса полученной твердой смеси?
Решение При действии цинка на соляную кислоту выделяется водород:

Zn + 2НСl = ZnСl 2 + Н 2 (1),

который при нагревании восстанавливает оксид меди (II) до меди (2):

СuО + Н 2 = Cu + Н 2 О.

Найдем количества веществ в первой реакции:

m(р-ра НСl) = 18,7 . 1,07 = 20,0 г;

m(НСl) = 20,0 . 0,146 = 2,92 г;

v(НСl) = 2,92/36,5 = 0,08 моль;

v(Zn) = 2,0/65 = 0,031 моль.

Цинк находится в недостатке, поэтому количество выделившегося водорода равно:

v(Н 2) = v(Zn) = 0,031 моль.

Во второй реакции в недостатке находится водород, поскольку:

v(СuО) = 4,0/80 = 0,05 моль.

В результате реакции 0,031 моль СuО превратится в 0,031 моль Сu, и потеря массы составит:

m(СuО) — m(Сu) = 0,031×80 — 0,031×64 = 0,50 г.

Масса твердой смеси СuО с Сu после пропускания водорода составит:

4,0-0,5 = 3,5 г.

Ответ Масса твердой смеси СuО с Сu равна 3,5 г.

Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

Краткие сведения об открытии элемента

Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

Нахождение в природе

Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

Физические свойства

Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

Особенности строения молекулы

Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

Химические свойства

Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

  • взаимодействие с кислородом с образованием воды;
  • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
  • получение сероводорода при соединении с серой.

Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

Заключение

Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:


При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:


Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?