Системы линейных уравнений. Система уравнений

Содержание урока

Линейные уравнения с двумя переменными

У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

25x — стоимость x пирожных
10y — стоимость y чашек кофе

Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

25x + 10y = 200

Сколько корней имеет данное уравнение?

Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

x Z, y Z;
x ≥
0, y ≥ 0

Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 .Они обращают данное уравнение в тождество.

Уравнение вида ax + by = c называют линейным уравнением с двумя переменными . Решением или корнями этого уравнения называют пару значений (x; y ), которая обращает его в тождество.

Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

Например, уравнение 2(16x + 3y − 4) = 2(12 + 8x y ) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде. В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни толькона множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = −27,5

Система двух линейных уравнений с двумя переменными

Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными . Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

Поставим текст задачи следующим образом:

«Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений, то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

Метод подстановки

Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

Пример 2

Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

Значит решением системы является пара значение (5; 3)

Пример 3 . Решить методом подстановки следующую систему уравнений:

Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

Чтобы подставить одно уравнение в другое, сначала нужно .

Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

После выражения переменной x , наша система примет следующий вид:

Теперь подставим первое уравнение во второе и найдем значение y

Подставим y x

Значит решением системы является пара значений (3; 4)

Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

Видим, что в данном примере выражать x намного удобнее, чем выражать y .

Пример 4 . Решить методом подстановки следующую систему уравнений:

Выразим в первом уравнении x . Тогда система примет вид:

y

Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением , в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

Значит решением системы является пара значений (5; −3)

Метод сложения

Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

Решим следующую систему уравнений:

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

Приведем подобные слагаемые:

В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

Значит решением системы является пара значений (9; 6)

Пример 2

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

В результате получили простейшее уравнение 5x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

Значит решением системы является пара значений (4;3)

Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть к виду ac + by = c .

Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

Например, систему можно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

А систему уравнений методом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

Вернемся к самой первой системе , которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

В результате получили систему
Решением этой системы по-прежнему является пара значений (6; 5)

Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

Вернемся к системе , которую мы не смогли решить методом сложения.

Умножим первое уравнение на 6, а второе на −2

Тогда получим следующую систему:

Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

Зная, что значение переменной y равно 4, можно найти значение x . Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

Пример 4 . Решить следующую систему уравнений методом сложения:

Умножим второе уравнение на −1. Тогда система примет следующий вид:

Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

Пример 5 . Решить следующую систему уравнений методом сложения:

Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

Умножим второе уравнение на 3. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

Пример 6 . Решить следующую систему уравнений методом сложения:

Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

В получившейся системе первое уравнение можно умножить на −5, а второе на 8

Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

Пример 7 . Решить следующую систему уравнений методом сложения:

Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как , а правую часть второго уравнения как , то система примет вид:

У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

Первое уравнение умножим на −3, а во втором раскроем скобки:

Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

Получается, что система имеет бесчисленное множество решений.

Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

Получившаяся пара значений (2; −2) будет удовлетворять системе:

Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

Пример 8 . Решить следующую систему уравнений методом сложения:

Умножим первое уравнение на 6, а второе на 12

Перепишем то, что осталось:

Первое уравнение умножим на −1. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

Система линейных уравнений с тремя переменными

В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

ax + by + cz = d

Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z ) которая обращает уравнение в тождество.

Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

Пример 1 . Решить следующую систему уравнений методом подстановки:

Выразим в третьем уравнении x . Тогда система примет вид:

Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Пример 2 . Решить систему методом сложения

Сложим первое уравнение со вторым, умноженным на −2.

Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Задачи на составление систем линейных уравнений

Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

Задача 1 . Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

Решение

Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как x y = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

Подставим второе уравнение в первое и найдём y

Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

Выполним проверку. Для начала убедимся, что система решена правильно:

Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

Так наша система содержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

Задача 2 . На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

Решение

Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

Тонны были переведены в килограммы, поскольку масса дубовых и сосновых шпал измерена в килограммах.

В результате получаем два уравнения, которые образуют систему

Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

Подставим первое уравнение во второе и найдём y

Подставим y в уравнение x = 300 − y и узнаем чему равно x

Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

Задача 3 . Взяли три куска сплава меди с никелем в отношениях 2: 1 , 3: 1 и 5: 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4: 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

  • Системы m линейных уравнений с n неизвестными.
    Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
    где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
    b i , i = 1, …, m — свободные члены;
    x j , j = 1, …, n — неизвестные.
    Вышеприведенная система может быть записана в матричном виде: A · X = B ,




    где (A |B ) — основная матрица системы;
    A — расширенная матрица системы;
    X — столбец неизвестных;
    B — столбец свободных членов.
    Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
    Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
    Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
    Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
    Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
    Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
  • Системы n линейных уравнений с n неизвестными
    Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
    Метод Крамера для решения систем n линейных уравнений с n неизвестными.
    Правило Крамера.
    Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
    где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
  • Системы m линейных уравнений с n неизвестными
    Теорема Кронекера−Капелли .


    Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
    Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
    Eсли rang(Α) = rang(Α|B) , то возможны два случая:
    1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
    2) rang(Α) < n − решений бесконечно много.
  • Метод Гаусса для решения систем линейных уравнений


    Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
    Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
    К элементарным преобразованиям над строками относятся следующие:
    1) перемена местами двух строк;
    2) умножение строки на число, отличное от 0;
    3) прибавление к строке другой строки, умноженной на произвольное число;
    4) выбрасывание нулевой строки.
    Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
  • Система однородных линейных уравнений.
    Однородная система имеет вид:

    ей соответствует матричное уравнение A · X = 0 .
    1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
    2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
    3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
    4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
    X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
    где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
    5) Фундаментальная система решений может быть получена из общего решения однородной системы:

    ,
    если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
    Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
    Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
    Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
    Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
    Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
    Доказательство :
    1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
    2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
    Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.

Многие практические задачи сводятся к решению систем алгебраических уравнений 1–й степени или, как их обычно называют, систем линœейных уравнений. Мы научимся решать любые такие системы, не требуя даже, чтобы число уравнений совпадало с числом неизвестных.

В общем виде система линœейных уравнений записывается так:

Здесь числа a ij коэффициенты системы, b i свободные члены, x i – символы неизвестных . Очень удобно ввести матричные обозначения: – основная матрица системы, – матрица–столбец свободных членов, – матрица–столбец неизвестных. Тогда систему можно записать так: AX =B или, подробнее:

В случае если в левой части этого равенства выполнить умножение матриц по обычным правилам и приравнять элементы полученного столбца к элементам В , то мы придём к первоначальной записи системы.

Пример 14 . Запишем одну и ту же систему линœейных уравнений двумя разными способами:

Система линœейных уравнений принято называть совместной , в случае если у неё есть хотя бы одно решение, и несовместной, если решений нет.

В нашем примере система совместна, столбик является её решением:

Это решение можно записать и без матриц: x =2, y =1 . Систему уравнений будем называть неопределённой , в случае если она имеет более одного решения, и определённой, если решение единственно.

Пример 15 . Система является неопределœенной. К примеру являются ее решениями. Читатель может найти и много других решений этой системы.

Научимся решать системы линœейных уравнений сначала в частном случае. Систему уравнений АХ =В будем называть крамеровской , в случае если её основная матрица А – квадратная и невырожденная. Другими словами, в крамеровской системе число неизвестных совпадает с числом уравнений и .

Теорема 6. (Правило Крамера). Крамеровская система линœейных уравнений имеет единственное решение, задаваемое формулами:

где – определитель основной матрицы, – определитель, полученный из D заменойi –го столбика столбиком свободных членов.

Замечание. Крамеровские системы можно решать и по–другому, с помощью обратной матрицы. Запишем такую систему в матричном виде: AX =В . Так как , то существует обратная матрицаА 1 . Умножаем матричное равенство на А 1 слева: А 1 АХ =А 1 В . Так как А 1 АХ =ЕХ =Х , то решение системы найдено: Х = А 1 В .Такой способ решения будем называть матричным . Ещё раз подчеркнём, что он годится только для крамеровских систем – в других случаях обратная матрица не существует. Разобранные примеры применения матричного метода и метода Крамера читатель найдёт ниже.

Изучим, наконец, общий случай – систему m линœейных уравнений с n неизвестными. Для её решения применяется метод Гаусса , который мы рассмотрим подробно.Для произвольной системы уравненийАХ =В выпишем расширенную матрицу. Так принято называть матрица, которая получится, в случае если к основной матрице А справа дописать столбец свободных членов В :

Как и при вычислении ранга, с помощью элементарных преобразований строк и перестановок столбцов будем приводить нашу матрицу к трапецевидной форме. При этом, конечно, соответствующая матрице система уравнений изменится, но будет равносильна исходной (ᴛ.ᴇ. будет иметь те же решения). В самом делœе, перестановка или сложение уравнений не изменят решений. Перестановка столбцов – тоже: уравнения x 1 +3x 2 +7x 3 =4 и x 1 +7x 3 +3x 2 =4, конечно, равносильны. Нужно только записывать, какой неизвестной соответствует данный столбец. Столбец свободных членов не переставляем – его обычно в матрице отделяют от других пунктиром. Возникающие в матрице нулевые строки можно не писать.

Пример 1 . Решить систему уравнений:

Решение. Выпишем расширенную матрицу и приведем её к трапецевидной форме. Знак ~ теперь будет означать не только совпадение рангов, но и равносильность соответствующих систем уравнений.

~ . Поясним выполненные действия.

Действие 1 . Ко 2–й строке прибавили 1–ю, умножив ее на (2). К 3–й и 4–й строкам прибавили 1–ю, умножив ее на (3). Цель этих операций – получить нули в первом столбике, ниже главной диагонали.

Действие 2. Так как на диагональном месте (2,2) оказался0 , пришлось переставить 2–й и 3–й столбики. Чтобы запомнить эту перестановку, написали сверху обозначения неизвестных.

Действие 3. K 3–й строке прибавили 2–ю, умножив ее на (2). К 4–й строке прибавили 2–ю. Цель – получить нули во втором столбике, ниже главной диагонали.

Действие 4. Нулевые строчки можно убрать.

Итак, матрица приведена к трапецевидной форме. Ее ранг r =2 . Неизвестные х 1 , х 3 – базисные; х 2 , х 4 – свободные. Придадим свободным неизвестным произвольные значения:

х 2 = a , х 4 = b.

Здесь a, b бывают любыми числами. Теперь из последнего уравнения новой системы

x 3 +x 4 = –3

находим х 3: х 3 = –3 b. Поднимаясь вверх, из первого уравнения

х 1 +3х 3 +2х 2 +4х 4 = 5

находим х 1: х 1 =5 3(3 b) 2a 4b = 14 2a b .

Записываем общее решение:

x 1 =14 2a b, x 2 =a, x 3 =–3 b, x 4 =b.

Можно записывать общее решение в виде матрицы–столбца:

При конкретных значениях a и b , можно получать частные решения. К примеру, приa =0, b =1 получим: – одно из решений системы.

Замечания. В алгоритме метода Гаусса мы видели (случай 1), что несовместность системы уравнений связана с несовпадением рангов основной и расширенной матриц. Приведём без доказательства следующую важную теорему.

Теорема 7 (Кронекера – Капелли) . Система линœейных уравнений совместна тогда и только тогда, когда ранг основной матрицы равен рангу расширенной матрицы системы.

Системы линейных уравнений - понятие и виды. Классификация и особенности категории "Системы линейных уравнений" 2017, 2018.

  • - СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

    Чтобы его строки (либо столбцы) были линейно зависимы. Пусть дана система, содержащая mлинейных уравнений сnнеизвестными: 5.1. Введем следующие обозначения. 5.2., - матрица системы - ее расширенная матрица. - столбец свободных членов. - столбец неизвестных. Если... .


  • - П.1. Сведение системы линейных уравнений к задаче

    нелинейной оптимизации (ЗНО) и наоборот. Постановка задачи ЗНО: Найти (8.1) минимум или максимум в некоторой области D. Как мы помним из мат. анализа, следует приравнять частные производные к нулю. Таким образом, ЗНО (8.1) свели к СНУ (8.2) (8.2) n нелинейных уравнений. ... .


  • - Неоднородные системы линейных уравнений

    Лекция 15 Рассмотрим неоднородную систему (16) Если соответствующие коэффициенты однородной системы (7) равны соответствующим коэффициентам неоднородной системы (16), то однородная система (7) называется соответствующей неоднородной системе (16). Теорема. Если... [читать подробнее] .


  • -

    7.1 Однородные системы линейных уравнений. Пусть дана однородная система линейных уравнений (*) Предположим, что набор чисел - какое-то решение этой системы. Тогда набор чисел тоже является решением. Это проверяется непосредственной подстановкой в уравнения системы.... .


  • - Структура множества решений системы линейных уравнений

    Таблица 3 Этапы моторного развития ребенка Этап Возраст Показатели моторного развития момент рождения до 4 мес Формирование контроля над положением головы и возможности ее свободной ориентации в пространстве 4-6 месяцев освоение начальной... .


  • - Системы линейных уравнений (СЛУ). Решение системы линейных уравнений. Элементарные преобразования СЛУ. Элементарные преобразования матрицы.

    Определение 1. Система линейных уравнений вида (1) , где, поле, называется системой m линейных уравнений с n неизвестными над полем, - коэффициенты при неизвестных, - свободные члены системы (1). Определение 2.Упорядоченная n-ка (), где, называется решением системы линейных... .


  • Системой m линейных уравнений с n неизвестными называется система вида

    где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

    Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .

    Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

    Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

    Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

    Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .

    Рассмотрим способы нахождения решений системы.


    МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

    Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

    Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

    Найдем произведение

    т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

    или короче A X=B .

    Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

    Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

    Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

    Примеры. Решить системы уравнений.

    ПРАВИЛО КРАМЕРА

    Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

    Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

    называется определителем системы .

    Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

    Тогда можно доказать следующий результат.

    Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

    Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

    Сложим эти уравнения:

    Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

    Аналогично можно показать, что и .

    Наконец несложно заметить, что

    Таким образом, получаем равенство: .

    Следовательно, .

    Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

    Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

    Примеры. Решить систему уравнений


    МЕТОД ГАУССА

    Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

    Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

    .

    Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x 1 . Для этого второе уравнение разделим на а 21 и умножим на –а 11 , а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а 31 и умножим на –а 11 , а затем сложим с первым. В результате исходная система примет вид:

    Теперь из последнего уравнения исключим слагаемое, содержащее x 2 . Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

    Отсюда из последнего уравнения легко найти x 3 , затем из 2-го уравнения x 2 и, наконец, из 1-го – x 1 .

    При использовании метода Гаусса уравнения при необходимости можно менять местами.

    Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

    и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

    К элементарным преобразованиям матрицы относятся следующие преобразования:

    1. перестановка строк или столбцов;
    2. умножение строки на число, отличное от нуля;
    3. прибавление к одной строке другие строки.

    Примеры: Решить системы уравнений методом Гаусса.


    Таким образом, система имеет бесконечное множество решений.

    С n неизвестными это система вида:

    где a ij и b i (i=1,…,m; b=1,…,n) - некоторые известные числа, а x 1 ,…,x n - неизвестные числа. В обозначении коэффициентов a ij индекс i определяет номер уравнения, а второй j - номер неизвестного, у которого расположен этот коэффициент.

    Однородная система - когда все свободные члены системы равны нулю (b 1 = b 2 = … = b m = 0 ), обратная ситуация — неоднородная система .

    Квадратная система - когда число m уравнений равняется числу n неизвестных.

    Решение системы — совокупность n чисел c 1 , c 2 , …, c n , таких, что подстановка всех c i вместо x i в систему превращает все её уравнения в тождества .

    Совместная система - когда у системы есть хоть бы 1-но решение, и несовместная система , когда у системы нет решений.

    У совместной системы такого вида (как приведен выше, пусть она будет (1)) может быть одно либо больше решений.

    Решения c 1 (1) , c 2 (1) , …, c n (1) и c 1 (2) , c 2 (2) , …, c n (2) совместной системы типа (1) будут различными , когда не выполняется даже 1-но из равенств:

    c 1 (1) = c 1 (2) , c 2 (1) = c 2 (2) , …, c n (1) = c n (2) .

    Совместная система типа (1) будет определённой , когда у нее есть только одно решение; когда у системы есть хотя бы 2 разных решений, она становится недоопределённой . Когда уравнений больше, чем неизвестных, система является переопределённой .

    Коэффициенты при неизвестных записываются как матрица:

    Она называется матрицей системы .

    Числа, которые стоят в правых частях уравнений, b 1 ,…,b m являются свободными членами .

    Совокупность n чисел c 1 ,…,c n является решением этой системы, когда все уравнения системы обращаются в равенство после подставки в них чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

    При решении системы линейных уравнений могут возникнуть 3 варианта:

    1. У системы есть только одно решение.

    2. У системы есть нескончаемое число решений. Например , . Решением этой системы будут все пары чисел, которые отличаются знаком.

    3. У системы нет решений. Например , , если бы решение существовало, то x 1 + x 2 равнялось бы в одно время 0 и 1.

    Методы решения систем линейных уравнений.

    Прямые методы дают алгоритм, по которому находится точное решение СЛАУ (систем линейных алгебраических уравнений). И если бы точность была абсолютной, они бы нашли его. Реальная электро-вычислительная машина, конечно, работает с погрешностью, поэтому решение будет приблизительным.