Основная единица измерения скорости в си. Единицы системы СИ

Надеюсь это поможет форумчанам более грамотно и вдумчиво оперировать с приставками и физическими величинами. Отличать милли (м) от мега (М), правильно записывать обозначения электрических величин, и т.п.

Основные источники информации:

  1. ДСТУ 3651.0-97 "Метрология. Единицы физических величин. Основные единицы физических величин Международной системы единиц. Основные положения, названия и обозначения";
  2. ДСТУ 3651.1-97 "Метрология. Единицы физических величин. Производные единицы физических величин Международной системы единиц и внесистемные единицы. Основные понятия, наименования и обозначения";
  3. ДСТУ 3651.2-97 "Метрология. Единицы физических величин. Физические постоянные и характеристические числа. Основные положения, обозначения, наименования и значения".

Основными единицами Международной системы единиц СИ (SI) являются:

метр (м) – длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 с;

килограмм (кг) – единица массы, равная массе международного прототипа килограмма;

секунда (с) – время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

ампер (А) – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2·10 -7 Н;

кельвин (К) – единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды;

кандела (кд) – сила света в заданном направлении от источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср;

моль (моль) – количество вещества системы, содержащей столько же молекул (атомов, частиц), сколько содержится атомов в углероде-12 массой 0,012 кг.

Производными единицами Международной системы единиц являются:

радиан (рад) – единица плоского угла, 1 рад = 1 м / м = 1;

стерадиан (ср) – единица телесного угла, 1 ср = 1 м 2 / м 2 = 1;

герц (Гц) – единица частоты, 1 Гц = 1 с -1 ;

ньютон (Н) – единица силы и веса, 1 Н = 1 кг·м / с 2 ;

паскаль (Па) – единица давления, (механического) напряжения, 1 Па = 1 Н / м 2 ;

джоуль (Дж) – единица энергии, работы, количества теплоты, 1 Дж = 1 Н·м;

ватт (Вт) – единица мощности, потока излучения, 1 Вт = 1 Дж / с;

кулон (Кл) – единица электрического заряда, количества электричества, 1 Кл = 1 А·с;

вольт (В) – единица электрического потенциала, (электрического) напряжения, электродвижущей силы, 1 В = 1 Вт / А;

фарад (Ф) – единица электрической емкости, 1 Ф = 1 Кл / В;

ом (Ом) – единица электрического сопротивления, 1 Ом = 1 В / А;

сименс (См) – единица электрической проводимости, 1 См = 1 Ом -1 ;

вебер (Вб) – единица магнитного потока, 1 Вб = 1 В·с;

тесла (Тл) – единица магнитной индукции, 1 Тл = 1 Вб / м 2 ;

генри (Гн) – единица индуктивности, 1 Гн = 1 Вб / м;

градус Цельсия (°С) – единица температуры Цельсия, 1 °С = 1 К;

люмен (лм) – единица светового потока, 1 лм = 1 кд·ср;·

люкс (лк) – единица освещенности, 1 лк = 1 лм / м 2 ;

беккерель (Бк) – единица активности (радионуклида), 1 Бк = 1 с -1 ;

грей (Гр) – единица поглощенной дозы (ионизирующего излучения), удельной переданной энергии, 1 Гр = 1 Дж / кг;

зиверт (Зв) – единица эквивалентной дозы (ионизирующего излучения), 1 Зв = 1 Дж / кг

Другие единицы:

бит (б) - наименьшая возможная единица измерения информации в вычислительной технике. Один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: да/нет, 1/0, включено/выключено, и т. п.

байт (Б) - единица измерения количества информации, обычно равная восьми битам (в этом случае может принимать 256 (2 8) различных значений).


Правила написания обозначений единиц

  • Обозначения единиц, произошедшие от фамилий, пишутся с заглавной буквы, в том числе с приставками СИ, например: ампер - А, мегапаскаль - МПа, килоньютон - кН, гигагерц - ГГц.
  • Обозначения единиц печатают прямым шрифтом, точку как знак сокращения после обозначения не ставят.
  • Обозначения помещают за числовыми значениями величин через пробел , перенос на другую строку не допускается. Исключения составляют обозначения в виде знака над строкой, перед ними пробел не ставится. Примеры: 10 м/с, 15°.
  • Если числовое значение представляет собой дробь с косой чертой, его заключают в скобки, например: (1/60) с –1 .
  • При указании значений величин с предельными отклонениями их заключают в скобки или проставляют обозначение единицы за числовым значением величины и за её предельным отклонением: (100,0 ± 0,1) кг, 50 г ± 1 г.
  • Обозначения единиц, входящие в произведение, отделяют точками на средней линии (Н·м, Па·с), не допускается использовать для этой цели символ «х». В машинописных текстах допускается точку не поднимать или разделять обозначения пробелами, если это не может вызвать недоразумения.
  • В качестве знака деления в обозначениях можно использовать горизонтальную черту или косую черту (только одну). При применении косой черты, если в знаменателе стоит произведение единиц, его заключают в скобки. Правильно: Вт/(м·К), неправильно: Вт/м/К, Вт/м·К.
  • Допускается применять обозначения единиц в виде произведения обозначений единиц, возведённых в степени (положительные и отрицательные): Вт·м –2 ·К –1 , А·м 2 . При использовании отрицательных степеней не разрешается использовать горизонтальную или косую черту (знак деления).
  • Допускается применять сочетания специальных знаков с буквенными обозначениями, например: °/с (градус в секунду).
  • Не допускается комбинировать обозначения и полные наименования единиц. Неправильно: км/час, правильно: км/ч.

Приставки для кратных единиц

Кратные единицы - единицы, которые в целое число раз превышают основную единицу измерения некоторой физической величины. Международная система единиц (СИ) рекомендует следующие приставки для обозначений кратных единиц:

Кратность Приставка
русская
Приставка
международная
Обозначение
русское
Обозначение
международное
Пример
10 1 дека deca да da дал - декалитр
10 2 гекто hecto г h га - гектар
10 3 кило kilo к k кН - килоньютон
10 6 мега Mega М M МПа - мегапаскаль
10 9 гига Giga Г G ГГц - гигагерц
10 12 тера Tera Т T ТВ - теравольт
10 15 пета Peta П P Пфлоп - петафлоп
10 18 экса Exa Э E ЭБ - эксабайт
10 21 зетта Zetta З Z Зб - зеттабит
10 24 йотта Yotta И Y

Двоичные приставки

В программировании и индустрии, связанной с компьютерами, те же самые приставки кило-, мега-, гига-, тера- и т. д. в случае применения к величинам, кратным степеням двойки (напр., байт), могут означать кратность не 1000, а 1024=2 10 . Какая именно система применяется, должно быть ясно из контекста (напр., применительно к объёму оперативной памяти и объёму дисковой памяти используется кратность 1024, применительно к каналам связи кратность 1000 "килобит в секунду").
1 килобайт = 1024 1 = 2 10 = 1024 байт
1 мегабайт = 1024 2 = 2 20 = 1 048 576 байт
1 гигабайт = 1024 3 = 2 30 = 1 073 741 824 байт
1 терабайт = 1024 4 = 2 40 = 1 099 511 627 776 байт
1 петабайт = 1024 5 = 2 50 = 1 125 899 906 842 624 байт
1 эксабайт = 1024 6 = 2 60 = 1 152 921 504 606 846 976 байт
1 зеттабайт = 1024 7 = 2 70 = 1 180 591 620 717 411 303 424 байт
1 йоттабайт = 1024 8 = 2 80 = 1 208 925 819 614 629 174 706 176 байт

PS: для двоичных приставок по последней редакции стандартов ISO предлагается добавлять окончание "би" (от binary ), т.е. "киби", "миби", "гиби" соответственно вместо "кило", "мега", "гига" и т.д.

Приставки для дольных единиц

Дольные единицы, составляют опредёленную долю (часть) от установленной единицы измерения некоторой величины. Международная система единиц (СИ) рекомендует следующие приставки для обозначений дольных единиц:

Дольность Приставка
русская
Приставка
международная
Обозначение
русское
Обозначение
международное
Пример
10 -1 деци deci д d дм - дециметр
10 -2 санти centi с c см - сантиметр
10 -3 милли milli м m мл - миллилитр
10 -6 микро micro мк µ (u) мкм - микрометр, микрон
10 -9 нано nano н n нм - нанометр
10 -12 пико pico п p пФ - пикофарад
10 -15 фемто femto ф f фс - фемтосекунда
10 -18 атто atto а a ас - аттосекунда
10 -21 зепто zepto з z
10 -24 йокто yocto и y

Правила использования приставок

  • Приставки следует писать слитно с наименованием единицы или, соответственно, с её обозначением.
  • Использование двух или более приставок подряд (напр., микромиллифарад) не разрешается.
  • Обозначения кратных и дольных единиц исходной единицы, возведенной в степень, образуют добавлением соответствующего показателя степени к обозначению кратной или дольной единицы исходной единицы, причём показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой). Пример: 1 км 2 = (10 3 м) 2 =10 6 м 2 (а не 10 3 м 2). Наименования таких единиц образуют, присоединяя приставку к наименованию исходной единицы: квадратный километр (а не кило-квадратный метр).
  • Если единица представляет собой произведение или отношение единиц, приставку, или её обозначение, присоединяют, как правило, к наименованию или обозначению первой единицы: кПа·с/м (килопаскаль-секунда на метр). Присоединять приставку ко второму множителю произведения или к знаменателю допускается лишь в обоснованных случаях.

Применимость приставок

В связи с тем, что наименование единицы массы в СИ - килограмм - содержит приставку «кило», для образования кратных и дольных единиц массы используют дольную единицу массы - грамм (0,001 кг).

Приставки ограниченно используются с единицами времени: кратные приставки вообще не сочетаются с ними (никто не использует «килосекунду», хотя это формально и не запрещено), дольные приставки присоединяются только к секунде (миллисекунда, микросекунда и т. д.). В соответствии с ГОСТ 8.417-2002, наименование и обозначения следующих единиц СИ не допускается применять с приставками: минута, час, сутки (единицы времени), градус, минута, секунда (единицы плоского угла), астрономическая единица, диоптрия и атомная единица массы.

С метрами из кратных приставок на практике употребляют только кило-: вместо мегаметров (Мм), гигаметров (Гм) и т. д. пишут «тысячи километров», «миллионы километров» и т. д.; вместо квадратных мегаметров (Мм 2) пишут «миллионы квадратных километров».

Ёмкость конденсаторов традиционно измеряют микрофарадами и пикофарадами, но не миллифарадами или нанофарадами (пишут 60 000 пФ, а не 60 нФ; 2 000 мкФ, а не 2 мФ).

Приставки, соответствующие показателям степени, не делящимся на 3 (гекто-, дека-, деци-, санти-), использовать не рекомендуется. Широко используются только сантиметр (являющийся основной единицей в системе СГС) и децибел, в меньшей степени - дециметр, а также гектар. В некоторых странах вино меряют декалитрами.

  • 1 Общие сведения
  • 2 История
  • 3 Единицы системы СИ
    • 3.1 Основные единицы
    • 3.2 Производные единицы
  • 4 Единицы, не входящие в СИ
  • Приставки

Общие сведения

Система СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.

Система СИ определяет семь основных и производные единицы измерения, а также набор . Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.

В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).

Основные единицы : килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.

Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

История

Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.

В 1799 г. были утверждены два эталона - для единицы измерения длины (метр) и для единицы измерения веса (килограмм).

В 1874 г. была введена система СГС, основанная на трех единицах измерения - сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.

В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.

В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.

В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».

В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества (моль).

В настоящее время СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

Единицы системы СИ

После обозначений единиц Системы СИ и их производных точка не ставится, в отличие от обычных сокращений.

Основные единицы

Величина Единица измерения Обозначение
русское название международное название русское международное
Длина метр metre (meter) м m
Масса килограмм kilogram кг kg
Время секунда second с s
Сила электрического тока ампер ampere А A
Термодинамическая температура кельвин kelvin К K
Сила света кандела candela кд cd
Количество вещества моль mole моль mol

Производные единицы

Производные единицы могут быть выражены через основные с помощью математических операций умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость - это расстояние, которое тело проходит в единицу времени. Соответственно, единица измерения скорости - м/с (метр в секунду).

Часто одна и та же единица измерения может быть записана по разному, с помощью разного набора основных и производных единиц (см., например, последнюю колонку в таблице ). Однако, на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл измеряемой величины. Например, для записи значения момента силы следует использовать Н×м, и не следует использовать м×Н или Дж.

Производные единицы с собственными названиями
Величина Единица измерения Обозначение Выражение
русское название международное название русское международное
Плоский угол радиан radian рад rad м×м -1 = 1
Телесный угол стерадиан steradian ср sr м 2 ×м -2 = 1
Температура по шкале Цельсия градус Цельсия °C degree Celsius °C K
Частота герц hertz Гц Hz с -1
Сила ньютон newton Н N кг×м/c 2
Энергия джоуль joule Дж J Н×м = кг×м 2 /c 2
Мощность ватт watt Вт W Дж/с = кг×м 2 /c 3
Давление паскаль pascal Па Pa Н/м 2 = кг?м -1 ?с 2
Световой поток люмен lumen лм lm кд×ср
Освещённость люкс lux лк lx лм/м 2 = кд×ср×м -2
Электрический заряд кулон coulomb Кл C А×с
Разница потенциалов вольт volt В V Дж/Кл = кг×м 2 ×с -3 ×А -1
Сопротивление ом ohm Ом Ω В/А = кг×м 2 ×с -3 ×А -2
Ёмкость фарад farad Ф F Кл/В = кг -1 ×м -2 ×с 4 ×А 2
Магнитный поток вебер weber Вб Wb кг×м 2 ×с -2 ×А -1
Магнитная индукция тесла tesla Тл T Вб/м 2 = кг×с -2 ×А -1
Индуктивность генри henry Гн H кг×м 2 ×с -2 ×А -2
Электрическая проводимость сименс siemens См S Ом -1 = кг -1 ×м -2 ×с 3 А 2
Радиоактивность беккерель becquerel Бк Bq с -1
Поглощённая доза ионизирующего излучения грэй gray Гр Gy Дж/кг = м 2 /c 2
Эффективная доза ионизирующего излучения зиверт sievert Зв Sv Дж/кг = м 2 /c 2
Активность катализатора катал katal кат kat mol×s -1

Единицы, не входящие в Систему СИ

Некоторые единицы измерения, не входящие в Систему СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».

Единица измерения Международное название Обозначение Величина в единицах СИ
русское международное
минута minute мин min 60 с
час hour ч h 60 мин = 3600 с
сутки day сут d 24 ч = 86 400 с
градус degree ° ° (П/180) рад
угловая минута minute (1/60)° = (П/10 800)
угловая секунда second (1/60)′ = (П/648 000)
литр litre (liter) л l, L 1 дм 3
тонна tonne т t 1000 кг
непер neper Нп Np
бел bel Б B
электронвольт electronvolt эВ eV 10 -19 Дж
атомная единица массы unified atomic mass unit а. е. м. u =1,49597870691 -27 кг
астрономическая единица astronomical unit а. е. ua 10 11 м
морская миля nautical mile миля 1852 м (точно)
узел knot уз 1 морская миля в час = (1852/3600) м/с
ар are а a 10 2 м 2
гектар hectare га ha 10 4 м 2
бар bar бар bar 10 5 Па
ангстрем ångström Å Å 10 -10 м
барн barn б b 10 -28 м 2

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ
ЕДИНСТВА ИЗМЕРЕНИЙ

ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

ГОСТ 8.417-81

(СТ СЭВ 1052-78)

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

Москва

РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ Ю.В. Тарбеев ,д-р техн. наук; К.П. Широков ,д-р техн. наук; П.Н. Селиванов , канд. техн. наук; Н.А. Ерюхина ВНЕСЕН Государственным комитетом СССР по стандартам Член Госстандарта Л.К. Исаев УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19 марта 1981 г. № 1449

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

State system for ensuring the uniformity of measurements.

Units of physical quantities

ГОСТ

8.417-81

(СТ СЭВ 1052-78 )

Постановлением Государственного комитета СССР по стандартам от 19 марта 1981 г. № 1449 срок введения установлен

с 01.01 1982 г.

Настоящий стандарт устанавливает единицы физических величин (далее - единицы), применяемые в СССР, их наименования, обозначения и правила применения этих единиц Стандарт не распространяется на единицы, применяемые в научных исследованиях и при публикациях их результатов, если в них не рассматривают и не используют результаты измерений конкретных физических величин, а также на единицы величин, оцениваемых по условным шкалам*. * Под условными шкалами понимаются, например, шкалы твердости Роквелла и Виккерса, светочувствительности фотоматериалов. Стандарт соответствует СТ СЭВ 1052-78 в части общих положений, единиц Международной системы, единиц, не входящих в СИ, правил образования десятичных кратных и дольных единиц, а также их наименований и обозначений, правил написания обозначений единиц, правил образования когерентных производных единиц СИ (см. справочное приложение 4).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Подлежат обязательному применению единицы Международной системы единиц*, а также десятичные кратные и дольные от них (см. разд. 2 настоящего стандарта). * Международная система единиц (международное сокращенное наименование - SI , в русской транскрипции - СИ), принята в 1960 г. XI Генеральной конференцией по мерам и весам (ГКМВ) и уточнена на последующих ГКМВ. 1.2. Допускается применять наравне с единицами по п. 1.1 единицы, не входящие в СИ, в соответствии с пп. 3.1 и 3.2 , их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные от вышеперечисленных единиц. 1.3. Временно допускается применять наравне с единицами по п. 1.1 единицы, не входящие в СИ, в соответствии с п. 3.3, а также некоторые, получившие распространение на практике кратные и дольные от них, сочетания этих единиц с единицами СИ, десятичными кратными и дольными от них и с единицами по п. 3.1. 1.4. Во вновь разрабатываемой или пересматриваемой документации, а также публикациях значения величин должны выражаться в единицах СИ, десятичных кратных и дольных от них и (или) в единицах, допускаемых к применению в соответствии с п. 1.2. Допускается также в указанной документации применять единицы по п. 3.3, срок изъятия которых будет установлен в соответствии с международными соглашениями. 1.5. Во вновь утверждаемой нормативно-технической документации на средства измерений должна предусматриваться их градуировка в единицах СИ, десятичных кратных и дольных от них или в единицах, допускаемых к применению в соответствии с п. 1.2. 1.6. Вновь разрабатываемая нормативно-техническая документация по методам и средствам поверки должна предусматривать поверку средств измерений, проградуированных во вновь вводимых единицах. 1.7. Единицы СИ, установленные настоящим стандартом, и единицы, допускаемые к применению пп. 3.1 и 3.2, должны применяться в учебных процессах всех учебных заведений, в учебниках и учебных пособиях. 1.8. Пересмотр нормативно-технической, конструкторской, технологической и другой технической документации, в которой применяются единицы, не предусмотренные настоящим стандартом, а также приведение в соответствие с пп. 1.1 и 1.2 настоящего стандарта средств измерений, градуированных в единицах, подлежащих изъятию, осуществляют в соответствии с п. 3.4 настоящего стандарта. 1.9. При договорно-правовых отношениях по сотрудничеству с зарубежными странами, при участии в деятельности международных организаций, а также в поставляемой за границу вместе с экспортной продукцией (включая транспортную и потребительскую тару) технической и другой документации, применяют международные обозначения единиц. В документации на экспортную продукцию, если эта документация не отправляется за границу, допускается применять русские обозначения единиц. (Новая редакция, Изм. № 1). 1.10. В нормативно-технической конструкторской, технологической и другой технической документации на различные виды изделий и продукции, используемые только в СССР, применяют предпочтительно русские обозначения единиц. При этом независимо от того, какие обозначения единиц использованы в документации на средства измерений при указании единиц физических величин на табличках, шкалах и щитках этих средств измерений применяют международные обозначения единиц. (Новая редакция, Изм. № 2). 1.11. В печатных изданиях допускается применять либо международные, либо русские обозначения единиц. Одновременно применение обоих видов обозначений в одном и том же издании не допускается, за исключением публикаций по единицам физических величин.

2. ЕДИНИЦЫ МЕЖДУНАРОДНОЙ СИСТЕМЫ

2.1. Основные единицы СИ приведены в табл. 1.

Таблица 1

Величина

Наименование

Размерность

Наименование

Обозначение

Определение

международное

Длина Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299792458 S [ XVII ГКМВ (1983 г.), Резолюция 1].
Масса

килограмм

Килограмм есть единица массы, равная массе международного прототипа килограмма [ I ГКМВ (1889 г.) и III ГКМВ (1901 г)]
Время Секунда есть время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 [ XIII ГКМВ (1967 г.), Резолюция 1]
Сила электрического тока Ампер есть сила равная силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 m один от другого, вызвал бы на каждом участке проводника длиной 1 m силу взаимодействия, равную 2 × 10 -7 N [МКМВ (1946 г.), Резолюция 2, одобренная IX ГКМВ (1948 г.)]
Термодинамическая температура Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды [Х III ГКМВ (1967 г.), Резолюция 4]
Количество вещества Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 kg . При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц [ XIV ГКМВ (1971 г.), Резолюция 3]
Сила света Кандела есть сила, равная силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 × 10 12 Hz , энергетическая сила света которого в этом направлении составляет 1/683 W / sr [ XVI ГКМВ (1979 г.), Резолюция 3]
Примечания: 1. Кроме температуры Кельвина (обозначение Т ) допускается применять также температуру Цельсия (обозначение t ), определяемую выражением t = T - Т 0 , где Т 0 = 273,15 К, по определению. Температура Кельвина выражается в Кельвинах, температура Цельсия - в градусах Цельсия (обозначение международное и русское °С). По размеру градус Цельсия равен кельвину. 2. Интервал или разность температур Кельвина выражают в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия. 3. Обозначение Международной практической температуры в Международной практической температурной шкале 1968 г., если ее необходимо отличить от термодинамической температуры, образуется путем добавления к обозначению термодинамической, температуры индекса «68» (например, Т 68 или t 68). 4. Единство световых измерений обеспечивается в соответствии с ГОСТ 8.023-83.
(Измененная редакция, Изм. № 2, 3). 2.2. Дополнительные единицы СИ приведены в табл. 2.

Таблица 2

Наименование величины

Наименование

Обозначение

Определение

международное

Плоский угол Радиан есть угол между двумя радиусами окружности, длина дуги между которыми равна радиусу
Телесный угол

стерадиан

Стерадиан есть телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы
(Измененная редакция, Изм. № 3). 2.3. Производные единицы СИ следует образовывать из основных и дополнительных единиц СИ по правилам образования когерентных производных единиц (см. обязательное приложение 1). Производные единицы СИ, имеющие специальные наименования, также могут быть использованы для образования других производных единиц СИ. Производные единицы, имеющие специальные наименования, и примеры других производных единиц приведены в табл. 3 - 5. Примечание. Электрические и магнитные единицы СИ следует образовывать в соответствии с рационализованной формой уравнений электромагнитного поля.

Таблица 3

Примеры производных единиц СИ, наименования которых образованы из наименований основных и дополнительных единиц

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Площадь

квадратный метр

Объем, вместимость

кубический метр

Скорость

метр в секунду

Угловая скорость

радиан в секунду

Ускорение

метр на секунду в квадрате

Угловое ускорение

радиан на секунду в квадрате

Волновое число

метр в минус первой степени

Плотность

килограмм на кубический метр

Удельный объем

кубический метр на килограмм

ампер на квадратный метр

ампер на метр

Молярная концентрация

моль на кубический метр

Поток ионизирующих частиц

секунда в минус первой степени

Плотность потока частиц

секунда в минус первой степени - метр в минус второй степени

Яркость

кандела на квадратный метр

Таблица 4

Производные единицы СИ, имеющие специальные наименования

Величина

Наименование

Размерность

Наименование

Обозначение

Выражение через основные и дополнительные, единицы СИ

международное

Частота
Сила, вес
Давление, механическое напряжение, модуль упругости
Энергия, работа, количество теплоты

m 2 × kg × s -2

Мощность, поток энергии

m 2 × kg × s -3

Электрический заряд (количество электричества)
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила

m 2 × kg × s -3 × A -1

Электрическая емкость

L -2 M -1 T 4 I 2

m -2 × kg -1 × s 4 × A 2

m 2 × kg × s -3 × A -2

Электрическая проводимость

L -2 M -1 T 3 I 2

m -2 × kg -1 × s 3 × A 2

Поток магнитной индукции, магнитный поток

m 2 × kg × s -2 × A -1

Плотность магнитного потока, магнитная индукция

kg × s -2 × A -1

Индуктивность, взаимная индуктивность

m 2 × kg × s -2 × A -2

Световой поток
Освещенность

m -2 × cd × sr

Активность нуклида в радиоактивном источнике (активность радионуклида)

беккерель

Поглощенная доза излучения, керма, показатель поглощенной дозы (поглощенная доза ионизирующего излучения)
Эквивалентная доза излучения
(Измененная редакция, Изм. № 3).

Таблица 5

Примеры производных единиц СИ, наименования которых образованы с использованием специальных наименований, приведенных в табл. 4

Величина

Наименование

Размерность

Наименование

Обозначение

Выражение через основные и дополнительные единицы СИ

международное

Момент силы

ньютон-метр

m 2 × kg × s -2

Поверхностное натяжение

Ньютон на метр

Динамическая вязкость

паскаль-секунда

m -1 × kg × s -1

кулон на кубический метр

Электрическое смещение

кулон на квадратный метр

вольт на метр

m × kg × s -3 × A -1

Абсолютная диэлектрическая проницаемость

L -3 M -1 × T 4 I 2

фарад на метр

m -3 × kg -1 × s 4 × A 2

Абсолютная магнитная проницаемость

генри на метр

m × kg × s -2 × A -2

Удельная энергия

джоуль на килограмм

Теплоемкость системы, энтропия системы

джоуль на кельвин

m 2 × kg × s -2 × K -1

Удельная теплоемкость, удельная энтропия

джоуль на килограмм-кельвин

Дж/(кг × К)

m 2 × s -2 × K -1

Поверхностная плотность потока энергии

ватт на квадратный метр

Теплопроводность

ватт на метр-кельвнн

m × kg × s -3 × K -1

джоуль на моль

m 2 × kg × s -2 × mol -1

Молярная энтропия, молярная теплоемкость

L 2 MT -2 q -1 N -1

джоуль на моль-кельвин

Дж/(моль × К)

m 2 × kg × s -2 × K -1 × mol -1

ватт на стерадиан

m 2 × kg × s -3 × sr -1

Экспозиционная доза (рентгеновского и гамма-излучения)

кулон на килограмм

Мощность поглощенной дозы

грэй в секунду

3. ЕДИНИЦЫ, НЕ ВХОДЯЩИЕ В СИ

3.1. Единицы, перечисленные в табл. 6 , допускаются к применению без ограничения срока наравне с единицами СИ. 3.2. Без ограничения срока допускается применять относительные и логарифмические единицы за исключением единицы непер (см. п. 3.3). 3.3. Единицы, приведенные в табл. 7 , временно допускается применять до принятия по ним соответствующих международных решений. 3.4. Единицы, соотношения которых с единицами СИ даны в справочном приложении 2 , изымаются из обращения в сроки, предусмотренные программами мероприятий по переходу на единицы СИ, разработанными в соответствии с РД 50-160-79 . 3.5. В обоснованных случаях в отраслях народного хозяйства допускается применение единиц, не предусмотренных настоящим стандартом, путем введения их в отраслевые стандарты по согласованию с Госстандартом.

Таблица 6

Внесистемные единицы, допускаемые к применению наравне с единицами СИ

Наименование величины

Примечание

Наименование

Обозначение

Соотношение с единицей СИ

международное

Масса

атомная единица массы

1,66057 × 10 -27 × kg (приблизительно)

Время 1

86400 s

Плоский угол

(p /180) rad = 1,745329… × 10 -2 × rad

(p /10800) rad = 2,908882… × 10 -4 rad

(p /648000) rad = 4,848137…10 -6 rad

Объем, вместимость
Длина

астрономическая единица

1,49598 × 10 11 m (приблизительно)

световой год

9,4605 × 10 15 m (приблизительно)

3,0857 × 10 16 m (приблизительно)

Оптическая сила

диоптрия

Площадь
Энергия

электрон-вольт

1,60219 × 10 -19 J (приблизительно)

Полная мощность

вольт-ампер

Реактивная мощность
Механическое напряжение

ньютон на квадратный миллиметр

1 Допускается также применять другие единицы, получившие широкое распространение, например неделя, месяц, год, век, тысячелетие и т.п. 2 Допускается применять наименование «гон» 3 Не рекомендуется применять при точных измерениях. При возможности смещения обозначения l с цифрой 1 допускается обозначение L . Примечание. Единицы времени (минуту, час, сутки), плоского угла (градус, минуту, секунду), астрономическую единицу, световой год, диоптрию и атомную единицу массы не допускается применять с приставками
(Измененная редакция, Изм. № 3).

Таблица 7

Единицы, временно допускаемые к применению

Наименование величины

Примечание

Наименование

Обозначение

Соотношение с единицей СИ

международное

Длина

морская миля

1852 m (точно)

В морской навигации

Ускорение

В гравиметрии

Масса

2 × 10 -4 kg (точно)

Для драгоценных камней и жемчуга

Линейная плотность

10 -6 kg / m (точно)

В текстильной промышленности

Скорость

В морской навигации

Частота вращения

оборот в секунду

оборот в минуту

1/60 s -1 = 0,016(6) s -1

Давление
Натуральный логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную

1 Np = 0,8686…В = = 8,686… dB

(Измененная редакция, Изм. № 3).

4. ПРАВИЛА ОБРАЗОВАНИЯ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ, А ТАКЖЕ ИХ НАИМЕНОВАНИЙ И ОБОЗНАЧЕНИЙ

4.1. Десятичные кратные и дольные единицы, а также их наименования и обозначения следует образовывать с помощью множителей и приставок, приведенных в табл. 8.

Таблица 8

Множители и приставки для образования десятичных кратных и дольных единиц и их наименований

Множитель

Приставка

Обозначение приставки

Множитель

Приставка

Обозначение приставки

международное

международное

4.2. Присоединение к наименованию единицы двух или более приставок подряд не допускается. Например, вместо наименования единицы микромикрофарад следует писать пикофарад. Примечания: 1 В связи с тем, что наименование основной единицы - килограмм содержит приставку «кило», для образования кратных и дольных единиц массы используется дольная единица грамм (0,001 kg , кг), и приставки надо присоединять к слову «грамм», например, миллиграмм (mg , мг) вместо микрокилограмм (m kg , мккг). 2. Дольную единицу массы - «грамм» допускается применять и без присоединения приставки. 4.3. Приставку или ее обозначение следует писать слитно с наименованием единицы, к которой она присоединяется, или соответственно, с ее обозначением. 4.4. Если единица образована как произведение или отношение единиц, приставку следует присоединять к наименованию первой единицы, входящей в произведение или в отношение. Допускается применять приставку во втором множителе произведения или в знаменателе лишь в обоснованных случаях, когда такие единицы широко распространены и переход к единицам, образованным в соответствии с первой частью пункта, связан с большими трудностями, например: тонна-километр (t × km ; т × км), ватт на квадратный сантиметр (W / cm 2 ; Вт/см 2), вольт на сантиметр (V / cm ; В/см), ампер на квадратный миллиметр (A / mm 2 ; А/мм 2). 4.5. Наименования кратных и дольных единиц от единицы, возведенной в степень, следует образовывать путем присоединения приставки к наименованию исходной единицы, например, для образования наименований кратной или дольной единицы от единицы площади - квадратного метра, представляющей собой вторую степень единицы длины - метра, приставку следует присоединять к наименованию этой последней единицы: квадратный километр, квадратный сантиметр и т.д. 4.6. Обозначения кратных и дольных единиц от единицы, возведенной в степень, следует образовывать добавлением соответствующего показателя степени к обозначению кратной или дольной от этой единицы, причем показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой). Примеры: 1. 5 km 2 = 5(10 3 m) 2 = 5 × 10 6 m 2 . 2. 250 cm 3 /s = 250(10 -2 m) 3 /(1 s) = 250 × 10 -6 m 3 /s. 3. 0,002 cm -1 = 0,002(10 -2 m) -1 = 0,002 × 100 m -1 = 0,2 m -1 . 4.7. Рекомендации по выбору десятичных кратных и дольных единиц приведены в справочном приложении 3.

5. ПРАВИЛА НАПИСАНИЯ ОБОЗНАЧЕНИЙ ЕДИНИЦ

5.1. Для написания значений величин следует применять обозначения единиц буквами или специальными знаками (…°,… ¢ ,… ¢ ¢), причем устанавливаются два вида буквенных обозначений: международные (с использованием букв латинского или греческого алфавита) и русские (с использованием букв русского алфавита). Устанавливаемые стандартом обозначения единиц приведены в табл. 1 - 7 . Международные и русские обозначения относительных и логарифмических единиц следующие: процент (%), промилле (о / оо), миллионная доля (рр m , млн -1), бел (В, Б), децибел (dB , дБ), октава (-, окт), декада (-, дек), фон (phon , фон). 5.2. Буквенные обозначения единиц должны печататься прямым шрифтом. В обозначениях единиц точку как знак сокращения не ставят. 5.3. Обозначения единиц следует применять после числовых: значений величин и помещать в строку с ними (без переноса на следующую строку). Между последней цифрой числа и обозначением единицы следует оставлять пробел, равный минимальному расстоянию между словами, которое определено для каждого типа и размера шрифта по ГОСТ 2.304-81. Исключения составляют обозначения в виде знака, поднятого над строкой (п. 5.1), перед которыми пробела не оставляют. (Измененная редакция, Изм. № 3). 5.4. При наличии десятичной дроби в числовом значении величины обозначение единицы следует помещать после всех цифр. 5.5. При указании значений величин с предельными отклонениями следует заключать числовые значения с предельными отклонениями в скобки и обозначения единицы помешать после скобок или проставлять обозначения единиц после числового значения величины и после ее предельного отклонения. 5.6. Допускается применять обозначения единиц в заголовках граф и в наименованиях строк (боковиках) таблиц. Примеры:

Номинальный расход. m 3 / h

Верхний предел показаний, m 3

Цена деления крайнего правого ролика, m 3 , не более

100, 160, 250, 400, 600 и 1000

2500, 4000, 6000 и 10000

Тяговая мощность, kW
Габаритные размеры, mm:
длина
ширина
высота
Колея, mm
Просвет, mm
5.7. Допускается применять обозначения единиц в пояснениях обозначений величин к формулам. Помещение обозначений единиц в одной строке с формулами, выражающими зависимости между величинами или между их числовыми значениями, представленными в буквенной форме, не допускается. 5.8. Буквенные обозначения единиц, входящих в произведение, следует отделять точками на средней линии, как знаками умножения*. * В машинописных текстах допускается точку не поднимать. Допускается буквенные обозначения единиц, входящих в произведение, отделять пробелами, если это не приводит к недоразумению. 5.9. В буквенных обозначениях отношений единиц в качестве знака деления должна применяться только одна черта: косая или горизонтальная. Допускается применять обозначения единиц в виде произведения обозначений единиц, возведенных в степени (положительные и отрицательные)**. ** Если для одной из единиц, входящих в отношение, установлено обозначение в виде отрицательной степени (например s -1 , m -1 , К -1 ; c -1 , м -1 , К -1), применять косую или горизонтальную черту не допускается. 5.10. При применении косой черты обозначения единиц в числителе и знаменателе следует помещать в строку, произведение обозначений единиц в знаменателе следует заключать в скобки. 5.11. При указании производной единицы, состоящей из двух и более единиц, не допускается комбинировать буквенные обозначения и наименования единиц, т.е. для одних единиц приводить обозначения, а для других - наименования. Примечание. Допускается применять сочетания специальных знаков…°,… ¢ ,… ¢ ¢ , % и о / оо с буквенными обозначениями единиц, например…°/ s и т. д.

ПРИЛОЖЕНИЕ 1

Обязательное

ПРАВИЛА ОБРАЗОВАНИЯ КОГЕРЕНТНЫХ ПРОИЗВОДНЫХ ЕДИНИЦ СИ

Когерентные производные единицы (далее - производные единицы) Международной системы, как правило, образуют при помощи простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц величины в уравнениях связи принимают равными единицам СИ. Пример. Единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся точки

v = s/t ,

Где v - скорость; s - длина пройденного пути; t - время движения точки. Подстановка вместо s и t их единиц СИ дает

[v ] = [s ]/[t ] = 1 m/s.

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся точки, при которой эта точка за время 1 s перемещается на расстояние 1 m . Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют величины со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное числу 1. Пример. Если для образования единицы энергии используют уравнение

Где Е - кинетическая энергия; m - масса материальной точки; v - скорость движения точки, то когерентную единицу энергии СИ образуют, например, следующим образом:

Следовательно, единицей энергии СИ является джоуль (равный ньютон-метру). В приведенных примерах он равен кинетической энергии тела массой 2 kg , движущегося со скоростью 1 m / s , или же тела массой 1 kg , движущегося со скоростью

ПРИЛОЖЕНИЕ 2

Справочное

Соотношение некоторых внесистемных единиц с единицами СИ

Наименование величины

Примечание

Наименование

Обозначение

Соотношение с единицей СИ

международное

Длина

ангстрем

икс-единица

1,00206 × 10 -13 m (приблизительно)

Площадь
Масса
Телесный угол

квадратный градус

3,0462... × 10 -4 sr

Сила, вес

килограмм-сила

9,80665 N (точно)

килопонд

грамм-сила

9,83665 × 10 -3 N (точно)

тонна-сила

9806,65 N (точно)

Давление

килограмм-сила на квадратный сантиметр

98066,5 Ра (точно)

килопонд на квадратный сантиметр

миллиметр водяного столба

мм вод. ст.

9,80665 Ра (точно)

миллиметр ртутного столба

мм рт. ст.

Напряжение (механическое)

килограмм-сила на квадратный миллиметр

9,80665 × 10 6 Ра (точно)

килопонд на квадратный миллиметр

9,80665 × 10 6 Ра (точно)

Работа, энергия
Мощность

лошадиная сила

Динамическая вязкость
Кинематическая вязкость

ом-квадратный миллиметр на метр

Ом × мм 2 /м

Магнитный поток

максвелл

Магнитная индукция

гпльберт

(10/4 p) А = 0,795775…А

Напряженность магнитного поля

(10 3 / p) А/ m = 79,5775…А/ m

Количество теплоты, термодинамический потенциал (внутренняя энергия, энтальпия, изохорно-изотермический потенциал), теплота фазового превращения, теплота химической реакции

калория (межд.)

4,1858 J (точно)

калория термохимическая

4,1840 J (приблизительно)

калория 15-градусная

4,1855 J (приблизительно)

Поглощенная доза излучения
Эквивалентная доза излучения, показатель эквивалентной дозы
Экспозиционная доза фотонного излучения (экспозиционная доза гамма- и рентгеновского излучений)

2,58 × 10 -4 C / kg (точно)

Активность нуклида в радиоактивном источнике

3,700 × 10 10 Bq (точно)

Длина
Угол поворота

2 p rad = 6,28… rad

Магнитодвижущая сила, разность магнитных потенциалов

ампервиток

Яркость
Площадь
Измененная редакция, Изм. № 3.

ПРИЛОЖЕНИЕ 3

Справочное

1. Выбор десятичной кратной или дольной единицы от единицы СИ диктуется прежде всего удобством ее применения. Из многообразия кратных и дольных единиц, которые могут быть образованы при помощи приставок, выбирают единицу, приводящую к числовым значениям величины, приемлемым на практике. В принципе кратные и дольные единицы выбирают таким образом, чтобы числовые значения величины находились в диапазоне от 0,1 до 1000. 1.1. В некоторых случаях целесообразно применять одну и ту же кратную или дольную единицу, даже если числовые значения выходят за пределы диапазона от 0,1 до 1000, например, в таблицах числовых значений для одной величины или при сопоставлении этих значений в одном тексте. 1.2. В некоторых областях всегда используют одну и ту же кратную или дольную единицу. Например, в чертежах, применяемых в машиностроении, линейные размеры всегда выражают в миллиметрах. 2. В табл. 1 настоящего приложения приведены рекомендуемые для применения кратные и дольные единицы от единиц СИ. Представленные в табл. 1 кратные и дольные единицы от единиц СИ для данной физической величины не следует считать исчерпывающими, так как они могут не охватывать диапазоны физических величин в развивающихся и вновь возникающих областях науки и техники. Тем не менее, рекомендуемые кратные и дольные единицы от единиц СИ способствуют единообразию представления значений физических величин, относящихся к различным областям техники. В этой же таблице помещены также получившие широкое распространение на практике кратные и дольные единицы от единиц, применяемых наравне с единицами СИ. 3. Для величин, не охваченных табл. 1, следует использовать кратные и дольные единицы, выбранные в соответствии с п. 1 данного приложения. 4. Для снижения вероятности ошибок при расчетах десятичные кратные и дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах СИ, заменяя приставки степенями числа 10. 5. В табл. 2 настоящего приложения приведены получившие распространение единицы некоторых логарифмических величин.

Таблица 1

Наименование величины

Обозначения

единиц СИ

единиц, не входящих и СИ

кратных и дольных от единиц, не входящих в СИ

Часть I . Пространство и время

Плоский угол

rad ; рад (радиан)

m rad ; мкрад

... ° (градус)... (минута)..." (секунда)

Телесный угол

sr ; cp (стерадиан)

Длина

m ; м (метр)

… ° (градус)

… ¢ (минута)

… ² (секунда)

Площадь
Объем, вместимость

l (L); л (литр)

Время

s ; с (секунда)

d ; сут (сутки)

min ; мин (минута)

Скорость
Ускорение

m / s 2 ; м/с 2

Часть II . Периодические и связанные с ними явления

Hz ; Гц (герц)

Частота вращения

min -1 ; мин -1

Часть III . Механика

Масса

kg ; кг (килограмм)

t ; т (тонна)

Линейная плотность

kg / m ; кг/м

mg / m ; мг/м

или g / km ; г/км

Плотность

kg / m 3 ; кг/м 3

Mg / m 3 ; Мг/м 3

kg / dm 3 ; кг/дм 3

g / cm 3 ; г/см 3

t / m 3 ; т/м 3

или kg / l ; кг/л

g / ml ; г/мл

Количество движения

kg × m / s ; кг × м/с

Момент количества движения

kg × m 2 / s ; кг × м 2 /с

Момент инерции (динамический момент инерции)

kg × m 2 , кг × м 2

Сила, вес

N ; Н (ньютон)

Момент силы

N × m ; Н × м

MN × m ; МН × м

kN × m ; кН × м

mN × m ; мН × м

m N × m ; мкН × м

Давление

Ра; Па (паскаль)

m Ра; мкПа

Напряжение
Динамическая вязкость

Ра × s ; Па × с

mPa × s ; мПа × с

Кинематическая вязкость

m 2 / s ; м 2 /с

mm 2 / s ; мм 2 /с

Поверхностное натяжение

mN / m ; мН/м

Энергия, работа

J ; Дж (джоуль)

(электрон-вольт)

GeV ; ГэВ MeV ; МэВ keV ; кэВ

Мощность

W ; Вт (ватт)

Часть IV . Теплота

Температура

К; К (кельвин)

Температурный коэффициент
Теплота, количество теплоты
Тепловой поток
Теплопроводность
Коэффициент теплопередачи

Вт/(м 2 × К)

Теплоемкость

kJ / K ; кДж/К

Удельная теплоемкость

Дж/(кг × К)

kJ /(kg × К); кДж/(кг × К)

Энтропия

kJ / K ; кДж/К

Удельная энтропия

Дж/(кг × К)

kJ /(kg × K); кДж/(кг × К)

Удельное количество теплоты

J / kg ; Дж/кг

MJ / kg ; МДж/кг kJ / kg ; кДж/кг

Удельная теплота фазового превращения

J / kg ; Дж/кг

MJ / kg ; МДж/кг

kJ / kg ; кДж/кг

Часть V . Электричество и магнетизм

Электрический ток (сила электрического тока)

A; A (ампер)

Электрический заряд (количество электричества)

С; Кл (кулон)

Пространственная плотность электрического заряда

С/ m 3 ; Кл/м 3

C / mm 3 ; Кл/мм 3

МС/ m 3 ; МКл/м 3

С/с m 3 ; Кл/см 3

kC / m 3 ; кКл/м 3

m С/ m 3 ; мКл/м 3

m С/ m 3 ; мкКл/м 3

Поверхностная плотность электрического заряда

С/ m 2 , Кл/м 2

МС/ m 2 ; МКл/м 2

С/ mm 2 ; Кл/мм 2

С/с m 2 ; Кл/см 2

kC / m 2 ; кКл/м 2

m С/ m 2 ; мКл/м 2

m С/ m 2 ; мкКл/м 2

Напряженность электрического поля

MV / m ; МВ/м

kV / m ; кВ/м

V / mm ; В/мм

V / cm ; В/см

mV / m ; мВ/м

m V / m ; мкВ/м

Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила

V , В (вольт)

Электрическое смещение

С/ m 2 ; Кл/м 2

С/с m 2 ; Кл/см 2

kC / cm 2 ; кКл/см 2

m С/ m 2 ; мКл/м 2

m С/ m 2 , мкКл/м 2

Поток электрического смещения
Электрическая емкость

F , Ф (фарад)

Абсолютная диэлектрическая проницаемость, электрическая постоянная

m F / m , мкФ/м

nF / m , нФ/м

pF / m , пФ/м

Поляризованность

С/ m 2 , Кл/м 2

С/с m 2 , Кл/см 2

kC / m 2 ; кКл/м 2

m С/ m 2 , мКл/м 2

m С/ m 2 ; мкКл/м 2

Электрический момент диполя

С × m , Кл × м

Плотность электрического тока

А/ m 2 , А/м 2

МА/ m 2 , МА/м 2

А/ mm 2 , А/мм 2

A /с m 2 , А/см 2

kA / m 2 , кА/м 2 ,

Линейная плотность электрического тока

kA / m ; кА/м

А/ mm ; А/мм

А/с m ; А/см

Напряженность магнитного поля

kA / m ; кА/м

A / mm ; А/мм

A / cm ; А/см

Магнитодвижущая сила, разность магнитных потенциалов
Магнитная индукция, плотность магнитного потока

Т; Тл (тесла)

Магнитный поток

Wb , Вб (вебер)

Магнитный векторный потенциал

Т × m ; Тл × м

kT × m ; кТл × м

Индуктивность, взаимная индуктивность

Н; Гн (генри)

Абсолютная магнитная проницаемость, магнитная постоянная

m Н/ m ; мкГн/м

nH / m ; нГн/м

Магнитный момент

А × m 2 ; А м 2

Намагниченность

kA / m ; кА/м

А/ mm ; А/мм

Магнитная поляризация
Электрическое сопротивление
Электрическая проводимость

S ; См (сименс)

Удельное электрическое сопротивление

W × m ; Ом × м

G W × m ; ГОм × м

М W × m ; МОм × м

k W × m ; кОм × м

W × cm ; Ом × см

m W × m ; мОм × м

m W × m ; мкОм × м

n W × m ; нОм × м

Удельная электрическая проводимость

MS / m ; МСм/м

kS / m ; кСм/м

Магнитное сопротивление
Магнитная проводимость
Полное сопротивление
Модуль полного сопротивления
Реактивное сопротивление
Активное сопротивление
Полная проводимость
Модуль полной проводимости
Реактивная проводимость
Активная проводимость
Активная мощность
Реактивная мощность
Полная мощность

V × A , В × А

Часть VI . Свет и связанные с ним электромагнитные излучения

Длина волны
Волновое число
Энергия излучения
Поток излучения, мощность излучения
Энергетическая сила света (сила излучения)

W / sr ; Вт/ср

Энергетическая яркость (лучистость)

W /(sr × m 2); Вт/(ср × м 2)

Энергетическая освещенность (облученность)

W / m 2 ; Вт/м 2

Энергетическая светимость (нзлучательность)

W / m 2 ; Вт/м 2

Сила света
Световой поток

lm ; лм (люмен)

Световая энергия

lm × s ; лм × с

lm × h; лм × ч

Яркость

cd / m 2 ; кд/м 2

Светимость

lm / m 2 ; лм/м 2

Освещенность

l х; лк (люкс)

Световая экспозиция

lx × s ; лк × с

Световой эквивалент потока излучения

lm / W ; лм/Вт

Часть VII . Акустика

Период
Частота периодического процесса
Длина волны
Звуковое давление

m Ра; мкПа

Скорость колебания частицы

mm / s ; мм/с

Объемная скорость

m 3 / s ; м 3 /с

Скорость звука
Поток звуковой энергии, звуковая мощность
Интенсивность звука

W / m 2 ; Вт/м 2

mW / m 2 ; мВт/м 2

m W / m 2 ; мкВт/м 2

pW / m 2 ; пВт/м 2

Удельное акустическое сопротивление

Pa × s / m ; Па × с/м

Акустическое сопротивление

Pa × s / m 3 ; Па × с/м 3

Механическое сопротивление

N × s / m ; Н × с/м

Эквивалентная площадь поглощения поверхностью или предметом
Время реверберации

Часть VIII Физическая химия и молекулярная физика

Количество вещества

mol ; моль (моль)

kmol ; кмоль

mmol ; ммоль

m mol ; мкмоль

Молярная масса

kg / mol ; кг/моль

g / mol ; г/моль

Молярный объем

m 3 / moi ; м 3 /моль

dm 3 / mol ; дм 3 /моль cm 3 / mol ; см 3 /моль

l / mol ; л/моль

Молярная внутренняя энергия

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Молярная энтальпия

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Химический потенциал

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Химическое сродство

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Молярная теплоемкость

J /(mol × K); Дж/(моль × К)

Молярная энтропия

J /(mol × K); Дж/(моль × К)

Молярная концентрация

mol / m 3 ; моль/м 3

kmol / m 3 ; кмоль/м 3

mol / dm 3 ; моль/дм 3

mol /1; моль/л

Удельная адсорбция

mol / kg ; моль/кг

mmol / kg ; ммоль/кг

Температуропроводность

M 2 / s ; м 2 /с

Часть IX . Ионизирующие излучения

Поглощенная доза излучения, керма, показатель поглощенной дозы (поглощенная доза ионизирующего излучения)

Gy ; Гр (грэй)

m G у; мкГр

Активность нуклида в радиоактивном источнике (активность радионуклида)

Bq ; Бк (беккерель)

(Измененная редакция, Изм. № 3).

Таблица 2

Наименование логарифмической величины

Обозначение единицы

Исходное значение величины

Уровень звукового давления
Уровень звуковой мощности
Уровень интенсивности звука
Разность уровней мощности
Усиление, ослабление
Коэффициент затухания

ПРИЛОЖЕНИЕ 4

Справочное

ИНФОРМАЦИОННЫЕ ДАННЫЕ О СООТВЕТСТВИИ ГОСТ 8.417-81 СТ СЭВ 1052-78

1. Разделы 1 - 3 (пп. 3.1 и 3.2); 4, 5 и обязательное Приложение 1 к ГОСТ 8.417-81 соответствуют разделам 1 - 5 и приложению к СТ СЭВ 1052-78. 2. Справочное приложение 3 к ГОСТ 8.417-81 соответствует информационному приложению к СТ СЭВ 1052-78.

В 1875 г. Метрической Конференцией было основано Международное Бюро Мер и Весов его целью стало создание единой системы измерений, которая нашла бы применение во всем мире. Было решено, за основу принять метрическую систему, которая появилась еще во времена Французской революции и основывалась на метре и килограмме. Позднее были утверждены эталоны метра и килограмма. С течением времени система единиц измерения развивалась, в настоящее время в ней принять семь основных единиц измерения. В 1960 г. эта система единиц получила современное название Международная система единиц (система СИ) (Systeme Internatinal d"Unites (SI)). Система СИ не обладает статичностью, она развивается в соответствии с требованиями, которые в настоящее время предъявляются к измерениям в науке и технике.

Основные единицы измерения Международной системы единиц

В основу определения всех вспомогательных единиц в системе СИ положены семь основных единиц измерения. Основными физическими величинами в Международной системе единиц (СИ) являются: длина ($l$); масса ($m$); время ($t$); сила электрического тока ($I$); температура по шкале Кельвина (термодинамическая температура) ($T$); количество вещества ($\nu $); сила света ($I_v$).

Основными единицами в системе СИ стали единицы выше названных величин:

\[\left=м;;\ \left=кг;;\ \left=с;\ \left=A;;\ \left=K;;\ \ \left[\nu \right]=моль;;\ \left=кд\ (кандела).\]

Эталоны основных единиц измерения в СИ

Приведем определения эталонов основных единиц измерения как это сделано в системе СИ.

Метром (м) называют длину пути, который проходит свет в вакууме за время равное $\frac{1}{299792458}$ с.

Эталоном массы для СИ является гиря, имеющая форму прямого цилиндра, высота и диаметр которого 39 мм, состоящего из сплава платины и иридия массой в 1 кг.

Одной секундой (с) называют интервал времени, который равен 9192631779 периодам излучения, который соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия (133).

Один ампер (А) - это сила тока, проходящего в двух прямых бесконечно тонких и длинных проводниках, расположенных на расстоянии 1 метр, находящихся в вакууме порождающая силу Ампера (сила взаимодействия проводников) равную $2\cdot {10}^{-7}Н$ на каждый метр проводника.

Один кельвин (К) - это термодинамическая температура равная $\frac{1}{273,16}$ части от температуры тройной точки воды.

Один мол (моль) - это количество вещества, в котором имеется столько же атомов, сколько их содержится в 0,012 кг углерода (12).

Одна кандела (кд) равна силе света, который испускает монохроматический источник частотой $540\cdot {10}^{12}$Гц с энергетической силой в направлении излучения $\frac{1}{683}\frac{Вт}{ср}.$

Наука развивается, совершенствуется измерительная техника, определения единиц измерения пересматривают. Чем выше точность измерений, тем больше требований к определению единиц измерения.

Производные величины системы СИ

Все остальные величины рассматриваются в системе СИ как производные от основных. Единицы измерения производных величин определены как результат произведения (с учетом степени) основных. Приведем примеры производных величин и их единиц в системе СИ.

В системе СИ имеются и безразмерные величины, например, коэффициент отражения или относительная диэлектрическая проницаемость. Эти величины имеют размерность единицы.

Система СИ включает производные единицы, обладающие специальными названиями. Эти названия - компактные формы представления комбинации основных величин. Приведем примеры единиц системы СИ, имеющих собственные наименования (табл. 2).

Каждая величина в системе СИ имеет только одну единицу измерения, но одна и та же единица измерения может использоваться для разных величин. Джоуль - единица измерения количества теплоты и работы.

Система СИ, единицы измерения кратные и дольные

В Международной системе единиц имеется набор приставок к единицам измерения, которые применяют, если численные значения рассматриваемых величин существенно больше или меньше, чем единица системы, которая применяется без приставки. Эти приставки используются с любыми единицами измерения, в системе СИ они являются десятичными.

Приведем примеры таких приставок (табл.3).

При написании приставку и наименование единицы пишут слитно, так, что приставка и единица измерения образуют единый символ.

Отметим, что единица массы в системе СИ (килограмм) исторически уже имеет приставку. Десятичные кратные и дольные единицы килограмма получают соединением приставки к грамму.

Внесистемные единицы

Система СИ универсальна и является удобной в международном общении. Практически все единицы, единицы не входящие в систему СИ можно определить, используя термины системы СИ. Применение системы СИ является предпочтительным в научном образовании. Однако имеются некоторые величины, которые не входят в СИ, но широко используются. Так, единицы времени такие как минута, час, сутки являются частью культуры. Не которые единицы используют по исторически сложившимся причинам. При использовании единиц, которые не принадлежат системе СИ необходимо указывать способы их перевода в единицы СИ. Пример единиц указан в табл.4.

Многообразие отдельные единиц (силу, например, можно было выразить в кг, фунтах и др.) и систем единиц создавало большие трудности во всемирном обмене научными и экономическими достижениями. Поэтому еще в 19 веке отмечалась необходимость в создании единой международной системы, которая бы включала в себя и единицы измерений величин, используемых во всех разделах физики. Однако, соглашение о введении такой системы было принято только в 1960 году.

Международная система единиц – это правильно построенная и взаимосвязанная совокупность физических величин. Она была принята в октябре 1960 года на 11 генеральной конференции по мерам и весам. Сокращенное название системы –SI. В русской транскрипции – СИ. (система интернациональная).

В СССР в 1961 году был введен в действие ГОСТ 9867-61, которым устанавливается предпочтительное применение этой системы во всех областях науки, техники, и преподавания. В настоящие время действующим является ГОСТ 8.417-81 «ГСИ. Единицы физических величин». Этот стандарт устанавливает единицы физических величин, применяемые в СССР, их наименования, обозначения и правила применения. Он разработан в полном соответствии с системой СИ и с СТ СЭВ 1052-78.

Система Си состоит из семи основных единиц, двух дополнительных и ряда производных. Кроме единиц СИ допускается применение дольных и кратных единиц, получаемых умножением исходных величин на 10 n , гдеn= 18, 15, 12, … -12, -15, -18. Наименование кратных и дольных единиц образуется присоединением соответствующих десятичных приставок:

экса (Э) = 10 18 ; пета (П) = 10 15 ; тера (Т) = 10 12 ; гига (Г) = 10 9 ; мега (М) = 10 6 ;

мили (м) = 10 –3 ; микро (мк) = 10 –6 ; нано (н) = 10 –9 ; пико (п) = 10 –12 ;

фемто (ф) = 10 –15 ; атто (а) = 10 –18 ;

ГОСТ 8.417-81 разрешает использовать кроме указанных единиц ряд внесистемных единиц, а также единицы, временно разрешенные к применению до принятия соответствующих международных решений.

К первой группе относятся: тонна, сутки, час, минута, год, литр, световой год, вольт-ампер.

Ко второй группе относятся: морская миля, карат, узел, об*мин.

1.4.4 Основные единицы си.

Единица длинны – метр (м)

Метр равен 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями 2p 10 и 5d 5 атома криптона-86.

В международном бюро мер и весов и в крупных национальных метрологических лабораториях созданы установки для воспроизведения метра в длинах световых волн.

Единица массы – килограмм (кг).

Масса – мера инерции тел и их гравитационных свойств. Килограмм равен массе международного прототипа килограмма.

Государственный первичный эталон килограмма СИ предназначен для воспроизведения, хранения и передачи единицы массы рабочим эталонам.

В состав эталона входят:

    Копия международного прототипа килограмма – платино-иридиевый прототип №12, представляющий собой гирю в виде цилиндра диаметром и высотой 39мм.

    Равноплечие призменные весы №1 на 1 кг с дистанционным управлением фирмы Рупхерт (1895 года) и №2 изготовленные во ВНИИМе в 1966г.

Один раз, в 10 лет государственный эталон сравнивают с эталоном-копией. За 90 лет масса государственного эталона увеличилась на 0,02мг из-за пыли, адсорбции и коррозии.

Сейчас масса является единственной величиной единица, которой определяется через вещественный эталон. Такое определение имеет ряд недостатков – изменение массы эталона с течением времени, невоспроизводимость эталона. Ведутся поисковые работы по выражению единицы массы через естественные константы, например через массу протона. Планируется также разработка эталона через определенное число атомов кремния Si-28. для решения этой задачи, прежде всего, должна быть повышена точность измерения числа Авогадро.

Единица измерения времени – секунда (с).

Время является одним из центральных понятий нашего мировоззрения, одним из важнейших факторов в жизни и деятельности людей. Его измеряют с помощью стабильных периодических процессов – годового вращения Земли вокруг Солнца, суточного – вращения Земли вокруг своей оси, различных колебательных процессов. Определение единицы времени – секунды несколько раз менялось в соответствии с развитием науки и требований к точности измерения. Сейчас существует следующее определение:

Секунда – равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133.

В настоящее время создан лучевой эталон времени, частоты и длинны, используемый службой времени и частоты. Радиосигналы позволяют передавать единицу времени, поэтому она широко доступна. Погрешность эталона секунды 1·10 -19 с.

Единица силы электрического тока – ампер (А)

Ампер равен силе не изменяющегося тока, который при прохождении по двум параллельным и прямолинейным проводникам бесконечной длинны и ничтожно малой площади поперечного сечения, расположенным в вакууме на расстоянии 1 метра друг от друга, вызвал бы на каждом участке проводника длинной 1 метр силу взаимодействия, равную 2·10 -7 Н.

Погрешность эталона ампера 4·10 -6 А. Эту единицу воспроизводят с помощью так называемых токовых весов, которые приняты в качестве эталона ампера. Планируется использовать в качестве основной единицы 1 вольт, так как погрешность его воспроизведения равна 5·10 -8 В.

Единица термодинамической температуры – Кельвин (К)

Температура – это величина, характеризующая степень нагретости тела.

Со времени изобретения Галилеем Термометра измерение температуры основано на применении т ого или иного термометрического вещества, изменяющего свой объем или давление при изменении температуры.

Все известные температурные шкалы (Фаренгейта, Цельсия, Кельвина) основаны на каких-либо реперных точках, которым приписываются различные числовые значения.

Кельвин и независимо от него Менделеев высказали соображения о целесообразности построения шкалы температур по одной реперной точке, в качестве которой была взята «тройная точка воды», являющаяся точкой равновесия воды в твердой, жидкой и газообразной фазах. Она в настоящее время может быть воспроизведена в специальных сосудах с погрешностью не более 0,0001 градуса Цельсия. Нижней границей температурного интервала служит точка абсолютного нуля. Если этот интервал разбить на 273,16 частей, то получиться единица измерения называемая Кельвином.

Кельвин – это 1/273,16 часть термодинамической температуры тройной точки воды.

Для обозначения температуры, выраженной в Кельвинах, принят символ Т, а в градусах Цельсия t. Переход производится по формуле:T=t+ 273,16. Градус Цельсия равен одному Кельвину (обе единицы имеют право на использование).

Единица силы света – кандела (кд)

Сила света –это величина, характеризующая свечение источника в некотором направлении, равна отношению светового потока к малому телесному углу, в котором он распространяется.

Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 (Вт/ср) (Ватт на стерадиан).

Погрешность воспроизведения единицы эталоном 1·10 -3 кд.

Единица количества вещества – моль.

Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде С12 массой 0,012кг.

При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами или специфицированными группами частиц.

Дополнительные единицы СИ

Международная система включает в себя две дополнительные единицы – для измерения плоского и телесного углов. Они не могут быть основными, так как являются безразмерными величинами. Присвоение углу самостоятельной размерности привело бы к необходимости изменений уравнений механики, относящихся к вращательному и криволинейному движению. Вместе с тем они не являются производными, так как не зависят от выбора основных единиц. Поэтому указанные единицы включены в СИ в качестве дополнительных, необходимых для образования некоторых производных единиц – угловой скорости, углового ускорения и т.п.

Единица плоского угла – радиан (рад)

Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Государственный первичный эталон радиана состоит из 36-гранной призмы и эталонной угломерной автоколлимационной установки с ценой деления отсчетных устройств 0,01’’. Воспроизведение единицы плоского угла осуществляется методом калибровки, исходя из того, что сумма всех центральных углов многогранной призмы равна 2π рад.

Единица телесного угла – стерадиан (ср)

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Измеряют телесный угол путем определения плоских углов при вершине конуса. Телесному углу 1ср соответствует плоский угол 65 0 32’. Для пересчета пользуются формулой:

где Ω – телесный угол в ср; α – плоский угол при вершине в градусах.

Телесному углу π соответствует плоский угол 120 0 , а телесному углу 2π – плоский угол 180 0 .

Обычно углы измеряют все-таки в градусах – это удобнее.

Преимущества СИ

    Она является универсальной, то есть охватывает все области измерений. С её внедрением можно отказаться от всех других систем единиц.

    Она является когерентной, то есть системой, в которой производные единицы всех величин получаются с помощью уравнений с числовыми коэффициентами, равными безразмерной единице (система является связанной и согласованной).

    Единицы в системе унифицированы (вместо ряда единиц энергии и работы: килограм-сила-метр, эрг, калория, киловатт-час, электрон-вольт и др. – одна единица для измерения работы и всех видов энергии – джоуль).

    Осуществляется четкие разграничение единиц массы и силы (кг и Н).

Недостатки СИ

    Не все единицы имеют удобный для практического использования размер: единица давления Па – очень маленькая величина; единица электрической емкости Ф – очень большая величина.

    Неудобство измерения углов в радианах (градусы воспринимаются легче)

    Многие производные величины не имеют пока собственных названий.

Таким образом, принятие СИ является очередным и очень важным шагом в развитии метрологии, шагом вперед в совершенствовании систем единиц физических величин.