Давление в жидкостях закон паскаля. Закон Паскаля

Блез Паскаль - французский математик, физик и философ, живший в середине семнадцатого века. Исследовал поведение жидкостей и газов, изучал давление.

Он заметил, что форма сосуда не оказывает никакого влияния на давление жидкости внутри его. А также сформулировал принцип: жидкости и газы передают одинаково по всем направлениям оказываемое на них давление.
Этот принцип называют законом Паскаля для жидкостей и газов.

Необходимо понимать, что в этом законе не учитывалась сила тяжести, действующая на жидкость. В действительности, давление жидкости растёт с глубиной из-за притяжения к Земле, и это гидростатическое давление.

Для вычисления его значения применяется формула:
- давление столба жидкости.

  • ρ - плотность жидкости;
  • g - ускорение свободного падения;
  • h - глубина (высота столба жидкости).

Полное давление жидкости на любой глубине складывается из гидростатического давления и давления, связанного с внешним сжатием:

где p0 - внешнее давление, например, поршня в сосуде с водой.

Применение закона Паскаля в гидравлике

Гидравлические системы используют несжимаемые жидкости, такие как нефть или вода, чтобы передавать давление из одной точки в другую внутри жидкости с выигрышем в силе. Гидравлические устройства используются для дробления твёрдых веществ, в прессах. У воздушных судов гидравлика установлена в тормозные системы и шасси.
Так как закон Паскаля справедлив и для газов, то в технике существуют пневматические системы, использующие давление воздуха.

Архимедова сила. Условие плавания тел

Знание архимедовой силы (по-другому - выталкивающей) важно при попытке понять, почему некоторые тела плавают, в то время как другие тела тонут.
Рассмотрим пример. Человек находится в бассейне. Когда он полностью погружается под воду, он легко может выполнить сальто, сделать кувырок или очень высоко подпрыгнуть. На суше выполнить такие трюки намного сложнее.
Такая ситуация в бассейне возможна из-за того, что на человека действует в воде архимедова сила. В жидкости давление возрастает с глубиной (это справедливо и для газа). Когда тело находится полностью под водой, то давление жидкости снизу тела преобладает над давлением сверху, и тело начинает всплывать.

Закон Архимеда

На тело в жидкости (газе) действует выталкивающая сила, равная по величине весу того количества жидкости (газа), которое вытеснено погружённой частью тела.

  • Fт - сила тяжести;
  • Fа - архимедова сила;
  • ρж - плотность жидкости или газа;
  • Vв. ж. - объём вытесненной жидкости (газа), равный объёму погружённой части тела;
  • Pв. ж. - вес вытесненной жидкости.

Условие плавания

  1. FТ> FA - тело тонет;
  2. FТ< FA - тело поднимается к поверхности до тех пор, пока не окажется в положении равновесия и не начнёт плыть;
  3. FТ = FA - тело находится в равновесии в водной или газовой среде (плавает).

(1623 - 1662)

Закон Паскаля гласит: "Давление, производимое на жидкость или газ, передается в любую точку жидкости или газа одинаково по всем направлениям".
Это утверждение объясняется подвижностью частиц жидкостей и газов во всех направлениях.


ОПЫТ ПАСКАЛЯ

В 1648 году то, что давление жидкости зависит от высоты ее столба, продемонстрировал Блез Паскаль.
Он вставил в закрытую бочку, наполненную водой, трубку диаметром 1 см2, длиной 5 м и, поднявшись на балкон второго этажа дома, вылил в эту трубку кружку воды. Когда вода в ней поднялась до высоты ~ 4 метра, давление воды увеличилось настолько, что в крепкой дубовой бочке образовались щели, через которые потекла вода.

Трубка Паскаля

А ТЕПЕРЬ БУДЬ ВНИМАТЕЛЕН!

Если заполнить одинаковые по размерам сосуды: один - жидкостью, другой - сыпучим материалом (например горохом), в третий поставить вплотную к стенкам твердое тело, на поверхность вещества в каждом сосуде положить одинаковые кружочки, например, из дерева /они должны прилегать к стенкам /, а сверху установить одинаковые по массе грузы,

то как изменится давление вещества на дно и стенки в каждом сосуде? Подумай! В каком случае срабатывает закон Паскаля? Как будет передаваться внешнее давление грузов?

В КАКИХ ТЕХНИЧЕСКИХ УСТРОЙСТВАХ ИСПОЛЬЗУЕТСЯ ЗАКОН ПАСКАЛЯ?

Закон Паскаля положен в основу устройства многих механизмов. Смотри рисунки, запоминай!

1. гидравлические прессы

Гидравлический мультипликатор предназначен для увеличения давления (р2 > р1, так как при одинаковой силе давления S1> S2).

Мультипликаторы применяются в гидравлических прессах.

2. гидравлические подъемники

Это упрощенная схема гидравлического подъемника, который устанавливается на самосвалах.

Назначение подвижного цилиндра - увеличение высоты подъема поршня. Для опускания груза открывают кран.

Заправочный агрегат для снабжения тракторов горючим действует так: компрессор нагнетает воздух в герметически закрытый бак с горючим, которое по шлангу поступает в бак трактора.

4. опрыскиватели

В опрыскивателях, используемых для борьбы с сельскохозяйственными вредителями, давление нагнетаемого в сосуд воздуха на раствор яда - 500 000 Н/м2. Жидкость распыляется при открытом кране

5. системы водоснабжения

Пневматическая система водоснабжения. Насос подает в бак воду, сжимающую воздушную подушку, и отключается при достижении давления воздуха 400 000 Н/м2. Вода по трубам поднимается в помещения. При понижении давления воздуха вновь включается насос.

6. водометы

Струя воды, выбрасываемая водометом под давлением 1 000 000 000 Н/м2, пробивает отверстия в металлических болванках, дробит породу в шахтах. Гидропушками оснащена и современная противопожарная техника.

7. при прокладке трубопроводов

Давление воздуха "раздувает" трубы, изготовленные в виде плоских металлических стальных лент, сваренных по кромкам. Это значительно упрощает прокладку трубопроводов различного назначения.

8. в архитектуре

Огромный купол из синтетической пленки поддерживается давлением, большим атмосферного лишь на 13,6 Н/м2.

9. пневматические трубопроводы

Давление в 10 000 - 30 000 Н/м2 работает в пневмоконтейнерных трубопроводах. Скорость составов в них достигает 45км/час. Этот вид транспорта используется для перевозки сыпучих и других материалов.

Контейнер для перевозки бытовых отходов.

ТЫ ЭТО СМОЖЕШЬ

1. Закончи фразу: "При погружении подводной лодки давление воздуха в ней....." . Почему?

2. Пищу для космонавтов изготовляют в полужидком виде и помещают в тюбики с эластичными стенками. При легком надавливании на тюбик космонавт извлекает из него содержимое. Какой закон проявляется при этом?

3. Что надо сделать, чтобы вода вытекала по трубке из сосуда?

4. В нефтяной промышленности для подъема нефти на поверхность земли применяется сжатый воздух, который нагнетается компрессорами в пространство над поверхностью нефтеносного слоя. Какой закон проявляется при этом? Как?

5. Почему пустой бумажный мешок, надутый воздухом, с треском разрывается,ь если ударить им о руку или обо что-то твердое?

6. Почему у глубоководных рыб при вытаскивании их на поверхность плавательный пузырь торчит изо рта?

КНИЖНАЯ ПОЛКА


ЗНАЕШЬ ЛИ ТЫ ОБ ЭТОМ?

Что такое кессонная болезнь?

Она проявляется, если очень быстро подниматься из глубины воды. Давление воды резко уменьшается и растворенный в крови воздух расширяется. Образующиеся пузырьки закупоривают кровеносные сосуды, мешая движению крови, и человек может погибнуть. Поэтому аквалангисты и ныряльщики всплывают медленно, чтобы кровь успевала уносить образующиеся пузырьки воздуха в легкие.

Как мы пьем?

Мы приставляем стакан или ложку с жидкостью ко рту и “втягиваем” в себя их содержимое. Как? Почему, в самом деле, жидкость устремляется к нам в рот? Причина такова: при питье мы расширяем грудную клетку и тем разрежаем воздух во рту; под давлением наружного воздуха жидкость устремляется в то пространство, где давление меньше, и таким образом проникает в наш рот. Здесь происходит то же самое, что произошло бы с жидкостью в сообщающихся сосудах, если бы над одним из этих сосудов мы стали разрежать воздух: под давлением атмосферы жидкость в этом сосуде поднялась бы. Наоборот, захватив губами горлышко бутылки, вы никакими усилиями не “втянете” из нее воду в рот, так как давление воздуха во рту и над водой одинаково. Итак, мы пьем не только ртом, но и легкими; ведь расширение легких - причина того, что жидкость устремляется в наш рот.

Мыльные пузыри

“Выдуйте мыльный пузырь, - писал великий английский ученый Кельвин, - и смотрите на него: вы можете заниматься всю жизнь его изучением, не переставая извлекать из него уроки физики”.

Мыльный пузырь вокруг цветка

В тарелку или на поднос наливают мыльного раствора настолько, чтобы дно тарелки было покрыто слоем в 2 - 3 мм; в середину кладут цветок или вазочку и накрывают стеклянной воронкой. Затем, медленно поднимая воронку, дуют в ее узкую трубочку, - образуется мыльный пузырь; когда же этот пузырь достигнет достаточных размеров, наклоняют воронку, высвобождая из-под нее пузырь. Тогда цветок окажется лежащим под прозрачным полукруглым колпаком из мыльной пленки, переливающейся всеми цветами радуги.

Несколько пузырей друг в друге

Из воронки, употребленной для описанного опыта, выдувают большой мыльный пузырь. Затем совершенно погружают соломинку в мыльный раствор так, чтобы только кончик ее, который придется взять в рот, остался сухим, и просовывают ее осторожно через стенку первого пузыря до центра; медленно вытягивая затем соломинку обратно, не доводя ее, однако до края, выдувают второй пузырь, заключенный в первом, в нем - третий, четвертый и т. д. Интересно наблюдать за пузырем, когда он из теплого помещения попадает в холодное: он видимо уменьшается в объеме и, наоборот, раздувается, попадая из холодной комнаты в теплую. Причина кроется, конечно, в сжатии и расширении воздуха, заключенного внутри пузыря. Если, например, на морозе в - 15° С объем пузыря 1000 куб. см и он с мороза попал в помещение, где температура +15° С, то он должен увеличиться в объеме примерно на 1000 * 30 * 1/273 = около 110 куб. см.

Обычные представления о недолговечности мыльных пузырей не вполне правильны: при надлежащем обращении удается сохранить мыльный пузырь в продолжение целых декад. Английский физик Дьюар (прославившийся своими работами по сжижению воздуха) хранил мыльные пузыри в особых бутылках, хорошо защищенных от пыли, высыхания и сотрясения воздуха; при таких условиях ему удалось сохранять некоторые пузыри месяц и более. Лоренсу в Америке удавалось годами сохранять мыльные пузыри под стеклянным колпаком.

Закон Паскаля - Давление, оказываемое на жидкость (газ) в каком-либо одном месте на ее границе, например, поршнем, передается без изменения во все точки жидкости (газа).

Но обычно используется так:

Немного поговорим о Законе Паскаля:

На каждую частицу жидкости, находящейся в поле тяготения Земли, действует сила тяжести. Под действием этой силы каждый слой жидкости давит на расположенные под ним слои. В результате давление внутри жидкости на разных уровнях не будет одинаковым. Следовательно, в жидкостях существует давление, обусловленное ее весом.

Из этого можно сделать вывод: Чем глубже мы будем погружаться под воду, тем сильнее будет действовать на нас давление воды

Давление, обусловленное весом жидкости, называют гидростатическим давлением .

Графически зависимость давления от глубины погружения в жидкость представлена на рисунке

На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, прессы, насосы, помпы и др.
Закон Паскаля неприменим в случае движущейся жидкости (газа), а также в случае, когда жидкость (газ) находится в гравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой.

В Формуле мы использовали:

Давление

Давление внешней среды

Плотность жидкости

Этот закон был открыт французским ученым Б. Паскалем в 1653 г. Его иногда называют основным законом .

Закон Паскаля можно объяснить с точки зрения молекулярного строения вещества. В твердых телах молекулы образуют кристаллическую решетку и колеблются около своих . В жидкостях и газах молекулы обладают относительной свободой, они могут перемещаться друг относительно друга. Именно эта особенность позволяет давление, производимое на жидкость (или газ) передавать не только в направлении действия силы, но и во всех направлениях.

Закон Паскаля нашел широкое применение в современной технике. На законе Паскаля основана работа современных суперпрессов, которые позволяют создавать давления порядка 800 МПа. Также на этом законе построена работа всей гидроавтоматики, управляющей космическими кораблями, реактивными авиалайнерами, станками с числовым программным управлением, экскаваторами, самосвалами и т.д.

Гидростатическое давление жидкости

Гидростатическое давление внутри жидкости на любой глубине не зависит от формы сосуда, в котором находится жидкость, и равно произведению жидкости, и глубины, на которой определяется давление:

В однородной покоящейся жидкости давления в точках, лежащих в одной горизонтальной плоскости (на одном уровне), одинаковы. Во всех случаях, приведенных на рис. 1, давление жидкости на дно сосудов одинаково.

Рис.1. Независимость гидростатического давления от формы сосуда

На данной глубине жидкость давит одинаково по всем направлениям, поэтому давление на стенку на данной глубине будет таким же, как и на горизонтальную площадку, расположенную на такой же глубине.

Полное давление в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления:

Давление у поверхности жидкости часто равно атмосферному давлению.

Примеры решения задач

ПРИМЕР 1

Задание В полый куб с ребром 40 см налита вода. Найти силу давления воды на дно и стенки куба.
Решение Выполним рисунок.

1) Гидростатическое давление на глубине

Сила давления воды на дно куба:

где - площадь дна; ,

2) Среднее давление на боковую грань равно полусумме давлений на уровне поверхности и на уровне дна:

сила давления на стенку куба:

Из таблиц плотность воды кг/м.

Переведем единицы в систему СИ: длина ребра куба см м.

Вычислим:

1) сила давления на дно:

2) сила давления на стенку:

Ответ Силы давления воды на дно и стенки куба 627 и 314 Н соответственно.

ПРИМЕР 2

Задание В два колена U-образной трубки налиты вода и масло, разделенные ртутью. Поверхности раздела ртути и жидкостей в обоих коленах находятся на одной высоте. Определить высоту столба воды, если высота столба масла 20 см.
Решение Выполним рисунок.

По закону Паскаля давление в обоих коленах трубки на уровне одинаково:

Давление воды на уровне

давление масла на уровне

Подставив выражения для давлений жидкостей в первое равенство, получим:

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник:Колесников Максим Игоревич
  • Руководитель:Щербинина Галина Геннадиевна
Цель работы: опытное подтверждение закона Паскаля.

Введение

Закон Паскаля стал известен в 1663 году. Именно это открытие легло в основу создания суперпрессов с давлением свыше 750 000 кПа, гидравлического привода, который в свою очередь обусловил появление гидроавтоматики, управляющей современными реактивными лайнерами, космическими кораблями, станками с числовым программным управлением, могучими самосвалами, горными комбайнами, прессами, экскаваторами... Таким образом, закон Паскаля нашел огромное применение в современном мире. Однако, все эти механизмы достаточно сложны и громоздки, поэтому мне захотелось создать устройства, в основе действия которых лежит закон Паскаля, чтобы убедиться самому и убедить одноклассников, многие из которых считают, что глупо тратить время на «древность», когда нас окружают современные приборы, что тема эта по-прежнему интересна и актуальна. Кроме того, приборы, созданные своими руками, как правило, вызывают интерес, заставляют думать, фантазировать, да и на открытия «старины глубокой» смотреть другими глазами.

Объектом моего исследования является закон Паскаля.

Цель работы: опытное подтверждение закона Паскаля.

Гипотеза: знание закона Паскаля может пригодиться для конструирования строительной техники.

Практическая значимость работы: В моей работе представлены опыты для демонстрации на уроках физики в 7 классе средней общеобразовательной школы. Разработанные опыты можно демонстрировать как на уроке при изучении явлений (надеюсь, что это поможет сформировать некоторые понятия при изучении физики), так и в качестве домашних заданий учащимся.

Предложенные установки являются универсальными, одна установка может быть использована для показа нескольких опытов.

Глава 1.Все наше достоинство – в способности мыслить

Блез Паска́ль(1623-1662 г.г.)– французский математик, механик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. В историю физики Паскаль вошел, установив основной закон гидростатики, и подтвердил предположение Торичелли о существовании атмосферного давления. В честь Паскаля называется единица измерения давления системы СИ. Закон Паскаля гласит: давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях. Даже известный закон Архимеда – это частный случай закона Паскаля.

Объяснить закон Паскаля можно с помощью свойств жидкостей и газов, а именно: молекулы жидкости и газа, ударяясь о стенки сосуда, создают давление. Давление увеличивается (уменьшается) при увеличении (уменьшении) концентрации молекул.

Широко распространена задача, с помощью которой можно понять действие закона Паскаля: при выстреле из винтовки в вареном яйце образуется отверстие, так как давление в этом яйце передаётся лишь по направлению ее движения. Сырое яйцо разбивается вдребезги, так как давление пули в жидкости, согласно закону Паскаля, передается одинаково по всем направлениям.

Кстати, известно, что сам Паскаль, используя открытый им закон, в ходе проведенных экспериментов изобрел шприц и гидравлический пресс.

Практическая значимость закона Паскаля

На законе Паскаля основана работа многих механизмов, по-другому, такие свойства газа, как сжимаемость и способность передавать давление во все стороны одинаково, нашли широкое применение в конструкции различных технических устройств.

  1. Так, сжатый воздух используется в подводной лодке для ее подъема с глубины. При погружении специальные цистерны внутри подводной лодки заполняются водой. Масса лодки увеличивается, и она погружается. Для подъема лодки в эти цистерны закачивается сжатый воздух, который вытесняет воду. Масса лодки уменьшается, и она всплывает.

Рис.1. ПЛ в надводном положении: цистерны главного балласта (ЦГБ) не заполнены


Рис.2 . ПЛ в подводном положении: произошло заполнение водой ЦГБ

  1. Устройства, в которых применяется сжатый воздух, называются пневматическими. К ним относится, например, отбойный молоток, которым вскрывают асфальт, рыхлят мерзлый грунт, дробят горные породы. Под действием сжатого воздуха пика отбойного молотка делает 1000-1500 ударов в минуту большой разрушительной силы.


  1. На производстве для ковки и обработки металлов используется пневматический молот и пневматический пресс.


  1. В грузовых автомобилях и на железнодорожном транспорте используется пневматический тормоз. В вагонах метро с помощью сжатого воздуха открываются и закрываются двери. Использование воздушных систем на транспорте связано с тем, что даже в случае утечки воздуха из системы он будет восполняться за счет работы компрессора и система будет исправно работать.
  2. На законе Паскаля основана и работа экскаватора, где применяются гидравлические цилиндры для приведения в движение его стрел и ковша.


Глава 2. Душа науки – это практическое применение её открытий

Опыт 1 (видео, метод моделирования принципа действия данного прибора на презентации)

Действие закона Паскаля можно проследить на работе лабораторного гидравлического пресса, состоящего из двух соединенных между собой левого и правого цилиндров, равномерно наполненных жидкостью (водой). Черным цветом выделены пробки (грузы), указывающие на уровень жидкости в этих цилиндрах.


Рис. 3 Схема гидравлического пресса


Рис. 4. Применение гидравлического пресса

Что здесь произошло? Мы надавили вниз на пробку в левом цилиндре, которая вытеснила жидкость из этого цилиндра по направлению к правому цилиндру, вследствие чего пробка в правом цилиндре, испытывая давление жидкости снизу, поднялась. Таким образом, жидкость передала давление.

Тот же самый эксперимент только несколько в ином виде я провел у себя дома: демонстрация эксперимента с двумя соединенными друг с другом цилиндрами – медицинскими шприцами, соединенными друг с другом и наполненными жидкостью-водой.

Устройство и принцип действия гидравлического пресса описан в учебнике 7 класса для общеобразовательных школ,

Опыт 2 (видео, использование метода моделирования для демонстрации сборки данного прибора на презентации)

В развитие предыдущего эксперимента для демонстрации закона Паскаля мною была также собрана модель деревянного мини-экскаватора, основа работы которого – цилиндры-поршни, наполненные водой. Что интересно, в качестве поршней, поднимающих и опускающих стрелу и ковш экскаватора, я использовал медицинские шприцы, изобретенные самим Блезом Паскалем в подтверждение его закона.

Итак, система состоит из обыкновенных медицинских шприцов по 20 мл (функция рычагов управления) и таких же шприцов по 5 мл (функция поршней). В эти шприцы мною была залита жидкость – вода. Чтобы соединить шприцы была использована система капельниц (обеспечивает герметизацию).

Для того чтобы указанная система заработала, мы надавливаем в одном месте на рычаг, давление воды передается в поршень, на пробку, пробка поднимается – экскаватор приходит в движение, опускается и поднимается стрела экскаватора и ковш.

Данный эксперимент можно продемонстрировать, отвечая на вопрос после § 36, стр. 87 учебника А.В.Перышкина для 7 класса: «На каком опыте можно показать особенность передачи давления жидкостями и газами?», опыт так же интересен с точки зрения доступности используемых материалов и практического применения закона Паскаля.

Опыт 3 (видео)

Присоединим к трубке с поршнем (шприцу) полый шар (пипетку) с множеством маленьких отверстий.

Наполним шар водой и нажмём на поршень. Давление в трубке увеличится, вода начнёт выливаться через все отверстия, при этом напор воды во всех струйках воды будет одинаковым.

Такой же результат можно получить, если вместо воды использовать дым.

Данный эксперимент является классическим для демонстрации закона Паскаля, однако использование материалов, доступных для каждого ученика, делает его особо эффектным и запоминающимся.

Аналогичный опыт описан и прокомментирован в учебнике 7 класса для общеобразовательных школ,

Заключение

В ходе подготовки к конкурсу я:

  • изучил теоретический материал по выбранной мною теме;
  • создал самодельные приборы и провел экспериментальную проверку закона Паскаля на следующих моделях: модель гидравлического пресса, модель экскаватора.

Выводы

Закон Паскаля, открытый в 17 веке, актуален и широко применяется и в наше время при конструировании технических устройств и механизмов, облегчающих работу человека.

Надеюсь, что собранные мной установки будут интересны моим друзьям и одноклассникам и помогут лучше разобраться в законах физики.