Применение и особенности видимого света и излучения. Электромагнитный спектр Длина видимого излучения

> Видимый свет

Узнайте определение и характеристику видимого света : длина волны, диапазон электромагнитного излучения, частота, диаграмма спектров цвета, восприятие цвета.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн видимого света 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.

В природе не существует цветов как таковых. Каждый оттенок, который мы видим, задает та или иная длина волны. образуется под воздействием самых длинных волн и представляет собой одну из двух граней видимого спектра.

О природе цвета

Возникновение того или иного цвета можно объяснить благодаря законам физики. Все цвета и оттенки являются результатами обработки мозгом информации, поступающей через глаза в форме световых волн различной длины. При отсутствии волн люди видят а при единовременном воздействии всего спектра - белый.

Цвета предметов определяются способностью их поверхностей поглощать волны определенной длины и отталкивать все остальные. Также имеет значение освещенность: чем ярче свет, тем интенсивнее отражаются волны, и тем ярче выглядит объект.

Люди способны различать более ста тысяч цветов. Любимые многими алые, бордовые и вишневые оттенки образуются самыми длинными волнами. Однако чтобы человеческий глаз мог увидеть красный цвет, не должна превышать 700 нанометров. За этим порогом начинается невидимый для людей инфракрасный спектр. Противоположная граница, отделяющая фиолетовые оттенки от ультрафиолетового спектра, находится на уровне около 400 нм.

Цветовой спектр

Спектр цветов как некоторая их совокупность, распределенная в порядке возрастания длины волны, был открыт Ньютоном в ходе проведения его знаменитых экспериментов с призмой. Именно он выделил 7 явно различимых цветов, а среди них - 3 основных. Красный цвет относится и к различимым, и к основным. Все оттенки, которые различают люди - это видимая область обширного электромагнитного спектра. Таким образом, цвет - это электромагнитная волна определенной длины, не короче 400, но не длиннее 700 нм.

Ньютон заметил, что пучки света разных цветов имели разные степени преломления. Если выражаться более корректно, то стекло преломляло их по-разному. Максимальной скорости прохождения лучей через вещество и, как следствие, наименьшей преломляемости способствовала наибольшая длина волны. Красный цвет является видимым отображением наименее преломляемых лучей.

Волны, образующие красный цвет

Электромагнитная волна характеризуется такими параметрами, как длина, частота и Под длиной волны (λ) принято понимать наименьшее расстояние между ее точками, которые колеблются в одинаковых фазах. Основные единицы измерения длины волн:

  • микрон (1/1000000 метра);
  • миллимикрон, или нанометр (1/1000 микрона);
  • ангстрем (1/10 миллимикрона).

Максимально возможная длина волны красного цвета равна 780 ммк (7800 ангстрем) при прохождении через вакуум. Минимальная длина волны этого спектра - 625 ммк (6250 ангстрем).

Другой существенный показатель - частота колебаний. Она взаимосвязана с длиной, поэтому волна может быть задана любой из этих величин. Частота волн красного цвета находится в пределах от 400 до 480 Гц. Энергия фотонов при этом образует диапазон от 1,68 до 1,98 эВ.

Температура красного цвета

Оттенки, которые человек подсознательно воспринимает как теплые либо холодные, с научной точки зрения, как правило, имеют противоположный температурный режим. Цвета, ассоциируемые с солнечным светом - красный, оранжевый, желтый - принято рассматривать как теплые, а противоположные им - как холодные.

Однако теория излучения доказывает обратное: у красных оттенков намного ниже, чем у синих. На деле это легко подтвердить: горячие молодые звезды имеют а угасающие - красный; металл при раскаливании сначала становится красным, затем желтым, а после - белым.

Согласно закону Вина, существует обратная взаимосвязь между степенью нагрева волны и ее длиной. Чем сильнее нагревается объект, тем большая мощность приходится на излучения из области коротких волн, и наоборот. Остается лишь вспомнить, где в видимом спектре существует наибольшая длина волны: красный цвет занимает позицию, контрастную синим тонам, и является наименее теплым.

Оттенки красного

В зависимости от конкретного значения, которое имеет длина волны, красный цвет приобретает различные оттенки: алый, малиновый, бордовый, кирпичный, вишневый и т. д.

Оттенок характеризуется 4 параметрами. Это такие, как:

  1. Тон - место, которое цвет занимает в спектре среди 7 видимых цветов. Длина электромагнитной волны задает именно тон.
  2. Яркость - определяется силой излучения энергии определенного цветового тона. Предельное снижение яркости приводит к тому, что человек увидит черный цвет. При постепенном повышении яркости появится за ним - бордовый, после - алый, а при максимальном повышении энергии - ярко-красный.
  3. Светлость - характеризует близость оттенка к белому. Белый цвет - это результат смешивания волн различных спектров. При последовательном наращивании этого эффекта красный цвет превратится в малиновый, после - в розовый, затем - в светло-розовый и, наконец, в белый.
  4. Насыщенность - определяет удаленность цвета от серого. Серый цвет по своей природе - это три основных цвета, смешанные в разных количествах при понижении яркости излучения света до 50%.

Диапазоны плавно пере-ходят друг в друга, чёткой границы между ними нет. Поэтому граничные значения длин волн порой весьма условны.

1. Радиоволны (Л > 1 мм). Источниками радиоволн служат колебания зарядов в проводах, антеннах, колебательных контурах. Радиоволны излучаются также во время гроз.

Сверхдлинные волны (Л > 10 км). Хорошо распространяются в воде, поэтому исполь-зуются для связи с подводными лодками.

Длинные волны (1 км < Л < 10 км). Используются в радиосвязи, радиовещании, радионавигации.

Средние волны (100 м < Л < 1 км). Радиовещание. Радиосвязь на расстоянии не более 1500 км.

Короткие волны (10 м < Л < 100 м). Радиовещание. Хорошо отражаются от ионо-сферы; в результате многократных отражений от ионосферы и от поверхности Земли могут распространяться вокруг земного шара. Поэтому на коротких волнах можно ловить радиостанции других стран.

Метровые волны (1м < Л < 10 м). Местное радивещание в УКВ-диапазоне. Напри-мер, длина волны радиостанции «Эхо Москвы» составляет 4 м. Используются также в телевидении (федеральные каналы); так, длина волны телеканала «Россия 1» равна примерно 5 м.

Дециметровые волны (10 см < Л < 1м). Телевидение (дециметровые каналы). На-пример, длина волны телеканала «Animal Planet» приблизительно равна 42 см. Это также диапазон мобильной связи; так, стандарт GSM 1800 использует радиовол-ны с частотой примерно 1800 МГц, т. е. с длиной волны около 17 см. Есть ещё одно хорошо известное вам применение дециметровых волн — это микровол-новые печи. Стандартная частота микроволновой печи равна 2450 МГц (это частота, на которой происходит резонансное поглощение электромагнитного излучения моле-кулами воды). Она отвечает длине волны примерно 12 см. Наконец, в технологиях беспроводной связи Wi-Fi и Bluetooth используется такая же длина волны — 12 см (частота 2400 МГц).

Сантиметровые волны (1 см < Л < 10 см). Это — область радиолокации и спутни-ковых телеканалов. Например, канал НТВ+ ведёт своё телевещание на длинах волн около 2 см.

Инфракрасное излучение (780 нм < Л < 1 мм). Испускается молекулами и атомами нагретых тел. Инфракрасное излучение называется ещё тепловым — когда оно попадает на наше тело, мы чувствуем тепло. Человеческим глазом инфракрасное излучение не воспринимается Мощнейшим источником инфракрасного излучения служит Солнце. Лампы накаливания излучают наибольшее количество энергии (до 80%) в как раз в инфракрасной области спектра. Инфракрасное излучение имеет широкую область применения: инфракрасные обогревате-ли, пульты дистанционного управления, приборы ночного видения, сушка лакокрасочных покрытий и многое другое. При повышении температуры тела длина волны инфракрасного излучения уменьшается, смещаясь в сторону видимого света. Засунув гвоздь в пламя горелки, мы можем наблю-дать это воочию: в какой-то момент гвоздь «раскаляется докрасна», начиная излучать в видимом диапазоне.

Видимый свет (380 нм < Л < 780 нм). Излучение в этом промежутке длин волн воспринимается человеческим глазом. Диапазон видимого света можно разделить на семь интервалов — так называемые спек-тральные цвета.

Красный: 625 нм — 780 нм;

Оранжевый: 590 нм — 625 нм;

Жёлтый: 565 нм — 590 нм;

Зелёный: 500 нм — 565 нм;

Голубой: 485 нм — 500 нм;

Синий: 440 нм — 485 нм;

Фиолетовый: 380 нм — 440 нм.

Глаз имеет максимальную чувствительность к свету в зелёной части спектра.

Ультрафиолетовое излучение (10 нм < Л < 380 нм). Главным источником ультрафиолетового излучения является Солнце. Именно ультрафи-олетовое излучение приводит к появлению загара. Человеческим глазом оно уже не вос-принимается. В небольших дозах ультрафиолетовое излучение полезно для человека: оно повышает иммунитет, улучшает обмен веществ, имеет целый ряд других целебных воздействий и потому применяется в физиотерапии. Ультрафиолетовое излучение обладает бактерицидными свойствами. Например, в боль-ницах для дезинфекции операционных в них включаются специальные ультрафиолетовые лампы. Очень опасным является воздействие УФ излучения на сетчатку глаза — при больших дозах ультрафиолета можно получить ожог сетчатки. Поэтому для защиты глаз (высоко в горах, например) нужно надевать очки, стёкла которых поглощают ультрафиолет.

Рентгеновское излучение (5 пм < Л < 10 нм). Возникает в результате торможения быстрых электронов у анода и стенок газоразряд-ных трубок (тормозное излучение), а также при некоторых переходах электронов внутри атомов с одного уровня на другой (характеристическое излучение).

Рентгеновское излучение легко проникает сквозь мягкие ткани человеческого тела, но по-глощается кальцием, входящим в состав костей. Это даёт возможность хорошо известные вам рентгеновские снимки. В аэропортах вы наверняка видели действие рентгенотелевизионных интроскопов — эти приборы просвечивают рентгеновскими лучами ручную кладь и багаж. Длина волны рентгеновского излучения сравнима с размерами атомов и межатомных рас-стояний в кристаллах; поэтому кристаллы являются естественными дифракционными ре-шётками для рентгеновских лучей. Наблюдая дифракционные картины, получаемые при прохождении рентгеновских лучей сквозь различные кристаллы, можно изучать порядок расположения атомов в кристаллических решётках и сложных молекулах. Так, именно с помощью рент,геност,рукт,урного анализа было определено устройство ряда сложных органических молекул — например, ДНК и гемоглобина. В больших дозах рентгеновское излучение опасно для человека — оно может вызывать раковые заболевания и лучевую болезнь.

Гамма-излучение (Л < 5 пм). Это излучение наиболее высокой энергии. Его проникающая способность намного выше, чем у рентгеновских лучей. Гамма-излучение возникает при переходах атомных ядер из одного состояния в другое, а также при некоторых ядерных реакциях. Некоторые насекомые и птицы способны видеть в ультрафиолете. Например, пчёлы с помощью своего уль-трафиолетового зрения находят нектар на цветах. Источниками гамма-лучей могут быть заряженные частицы, движущиеся со скоростя-ми, близкими к скорости света — в случае, если траектории таких частиц искривлены магнитным полем (так называемое синхротронное излучение). В больших дозах гамма-излучение очень опасно для человека: оно вызывает лучевую бо-лезнь и онкологические заболевания. Но в малых дозах оно может подавлять рост раковых опухолей и потому применяется в лучевой терапии. Бактерицидное действие гамма-излучения используется в сельском хозяйстве (гамма-сте-рилизация сельхозпродукции перед длительным хранением), в пищевой промышленности (консервирование продуктов), а также в медицине (стерилизация материалов).

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длинами волн приблизительно от 380 (фиолетовый) до 780 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемая земной атмосферой. Чистый воздух рассеивает голубой свет несколько сильнее, чем свет с большими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящему в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300-400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете.

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах.

Ньютон первый использовал слово спектр (лат. spectrum - видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он сделал наблюдение, что когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся с различной скоростью в прозрачной среде. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели. Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетого цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму, на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует три различных вида рецепторов.

Характеристики границ видимого излучения

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Цвет

Диапазон длин волн, нм

Диапазон частот, ТГц

Диапазон энергии фотонов, эВ

Фиолетовый

Оранжевый

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения нескольких монохроматических излучений с различными длинами волн.

Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемого земной атмосферой . Чистый воздух рассеивает синий свет существенно сильнее, чем свет с бо́льшими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящее в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300-400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете .

Энциклопедичный YouTube

    1 / 5

    ✪ Инфракрасный свет: за гранью видимого

    ✪ Видимое излучение

    ✪ Двойное лучепреломление (видимый свет)

    ✪ О видимом и невидимом

    ✪ Люминесценция и фосфоресценция

    Субтитры

    Человечество всегда тянулось к ночному небу Мы рисовали картинки из звезд, следили за планетами, Видели знаки и предсказания в небесных объектах. Но во Вселенной всё ещё остаётся так много неизведанного. Огромные расстояния отделяют нас от объектов, которые помогли бы нам найти ответы на самые важные вопросы: Как сформировались галактики? Как появились звезды и планеты? Есть ли на других планетах условия, пригодные для жизни? Чтобы разрабатывать и проверять наши теории, нам нужно знать что происходит в космосе. Поэтому мы создаём устройства, помогающие нам видеть больше. Они становятся всё массивней. Всё мощнее. Всё совершеннее. Со временем, астрономы перестали полагаться только на свет, видимый невооруженным глазом. Когда вы смотрите на окружающий мир, вы видите так называемый "видимый свет". Но видимый свет - это лишь одна из форм излучения. Во Вселенной существует множество разных видов излучения. Оно повсюду. Наше тело научилось воспринимать видимый свет с помощью глаз. Но оно также научилось ощущать другой вид излучения, называемый инфракрасным светом. Наше тело ощущает его как тепло. Это инфракрасное излучение было открыто астрономом Фредериком Уильямом Гершелем. Гершель знал, что призму можно использовать, для того чтобы разделить белый свет на разные цвета. Он хотел узнать, имеют ли различные цвета различную температуру. И оказалось, что имеют! Но затем Гершель измерил температуру пустого пространства, находящегося рядом с красным цветом. Никакого света не было видно, но температура поднялась. Так Гершель открыл невидимое инфракрасное излучение. Сейчас человечеству известно, что существуют невидимые глазу виды излучения. Они могут быть где угодно. Повсюду вокруг нас. Насколько их много? Зачем они существуют? Что они скрывают? Конечно же, мы должны были это выяснить. Энергия, путешествующая по Вселенной в форме волн, называется электромагнитным излучением. Весь диапазон изучений: от гамма-лучей с высокой энергией до радиоволн с низкой энергией, называется электромагнитным спектром. Наши глаза различают только видимый свет, но мы можем создавать устройства, такие как инфракрасные камеры, чтобы увидеть и другие виды излучения. Эти рукотворные "глаза" видят невидимый свет за нас и превращают его в понятную нашему глазу картинку. Предметы могут испускать разные виды излучения. Наблюдая за полным спектром предмета, мы можем увидеть настоящую картину предмета. Когда мы направляем такие устройства в небо, они открывают перед нами космос во всей красе. Когда мы смотрим на ночное небо, мы видим звезды и планеты, галактики и туманности только в видимом свете. Но, если бы могли различать инфракрасный свет, то небо выглядило бы совершенно по-другому. Во-первых, длинные волны инфракрасного света могут проходить сквозь облака газа и пыли. Более короткие волны видимого света блокируются или рассеиваются, при прохождении через такие скопления частиц. Получается, наблюдая инфракрасный свет, мы можем увидеть излучающие тепло объекты даже сквозь облака газа и пыли. Как, например, эта недавно сформировавшаяся звезды. Объекты, которые не излучают видимый свет сами по себе, как, например, планеты, могут быть достаточно горячими, чтобы излучать инфракрасный свет, позволяющий нам заметить их. А наблюдая как инфракрасный свет звезды проходит через атмосферу, мы можем изучить химический состав планеты. Пылевой хвост, оставленный далекими планетами в процессе их формирования также излучает инфракрасный свет, помогая нам понять, как рождаются новые планеты. Итак, инфракрасный свет помогает нам рассмотреть объекты, находящиеся неподалёку. Но кроме этого, он может рассказать нам о том, как появились самые первые объекты во Вселенной сразу после Большого Взрыва. Представьте, что вы отправляете на Землю письмо из галактики, расположенной в миллиардах световых лет от нас. Оно будет идти невероятно долго! И когда оно, наконец, придёт, тот, кто его прочитает, узнает новости давностью в миллиарды лет. Свет самых первых звезд, образовавшихся в молодой Вселенной, ведет себя точно так же. Он покидает звезды много лет назад и путешествует по космосу, преодолевая гигантские расстояния между галактиками. Если бы мы могли видеть его, мы бы видели галактики такими, какими они были в ранней Вселенной. Получается, мы могли бы видеть прошлое! Но, к сожалению, мы не можем его видеть. Почему? Потому что Вселенная расширяется. Когда свет путешествует по космосу, он растягивается этим расширением. Первые звезды светили в основном в видимом и ультрафиолетовом спектрах, но растягивание изменило длину волны света, превратив его в инфракрасный. Этот эффект называется "красным смещением". Единственная возможность увидеть достигающий нас свет далеких звезд, это поиск очень тусклого инфракрасного света. Собирая его, мы можем воссоздавать изображения самых первых галактик появившихся во Вселенной. Наблюдая за рождением первых звезд и галактик, мы углубляем свои знания о том, как образовалась наша Вселенная. Как Вселенная прошла путь от первых сверкающих звезд, до скоплений миллиардов звезд, которые мы видим сейчас. Что мы узнаем о том как росли и развивались галактики? Как хаос ранней Вселенной приобрёл порядок и структуру? В настоящее время NASA строит новый космический телескоп "Джеймс Уэбб". С помощью огромного зеркала, способного собирать инфракрасный свет, и орбиты, расположенной далеко позади Луны Уэбб позволит нам увидеть космос таким, каким мы его ещё не видели. Уэбб будет искать признаки наличия воды на планетах, вращающихся у других звезд. Будет делать фотографии младенчества нашей Вселенной. Увидит звезды и планетарные системы, скрытые в коконах пыли. Сможет найти ответы на самые важные вопросы Вселенной, и, возможно, даже на те которые мы ещё не успели задать. Ответы, которые скрываются от нас в виде инфракрасного света. Все что нам нужно делать - смотреть. [ Инфракрасный свет: за гранью видимого ] [ Принципы работы телескопа Джеймс Уэбб ] Перевод и субтитры: astronomyday.ru

История

Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах .

Ньютон первый использовал слово спектр (лат. spectrum - видение, появление) в печати в 1671 году , описывая свои оптические опыты. Он обнаружил, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный , оранжевый , жёлтый , зелёный , голубой , индиго и фиолетовый . Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели . Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый ≤450 ≥667 ≥2,75
Синий 450-480 625-667 2,58-2,75
Сине-зелёный 480-510 588-625 2,43-2,58
Зелёный 510-550 545-588 2,25-2,43
Желто-зелёный 550-570 526-545 2,17-2,25
Жёлтый 570-590 508-526 2,10-2,17
Оранжевый 590-630 476-508 1,97-2,10
Красный ≥630 ≤476 ≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения .