Формулы фишера примеры. В.П.Дядченко "Введение в стереохимию" (2)

Для изображения на iплоскости молекул с асимметрическими атомами углерода часто используют проекции, предложенные в 18Э1 году Э. Фишером.

Рассмотрим принцип их построения на примере молекулы бромфторхлорметана. Исходным пунктом при построении проекций Фишеоа служит пространственная модель молекулы или ее клиновидная проекция.
Расположим молекулу таким образом, чтооы в плоскости чертежа остался только атом углерода молекулы бромфторхлорметана, как это показано на рисунке:

Спроектируем на плоскость чертежа все атомы (Вг и CL снизу вверх, так как они расположены под плоскостью чертежа, а F и H- сверху вниз). Для того, чтобы полученная проекция отличалась от структурной формулы, условимся не изображать асимметрический атом углерода. Он подразумевается в проекции Фишера на месте пересечения вертикальной и горизонтальной линий:

Как видно из приведенного примера, проекция Фишера строится таким образом, чтобы связи асимметрического атома с заместителями изображались вертикальными и горизонтальными (но не наклонными!) линиями.

При пользовании проекциями Фишера важно помнить, что вертикальная линия в них изображает связи, удаляющиеся от нас, а горизонтальная линия - связи, направленные к нам. Отсюда вытекают правила пользования проекциями Фишера:

НЕЛЬЗЯ:
1) Нельзя выводить проекцию из плоскости чертежа (например,просматривать ее "на просвет*, то есть с другойсторонылиста).
2) Нельзя поворачивать проекцию вплоскости чертежа на 90° и 270°.
3) Нельзя менять местами два любых заместителя при асимметрическом атоме.

МОЖНО:
1)Можно поворачивать проекцию в плоекостй чертежа на 180°. При таком повороте вертикальные линииостаются вертикальными, а горизонтальные - горизонтальными.
2)Можно производить четное число парных перестановок заместителей при асимметрическом атоме.
3) Можнопроизводить круговую перестановку трех заместителей при асимметрическом атоме. Четвертый заместитель при этом остается на своем месте.


Асимметрический атом углерода связан с четырьмя неэквивалентными группами в молекуле глюкозы к числу таких атомов принадлежат атомы углерода с номерами от 1 до 5

Антиподы

вещество, характеризующееся противоположными по знаку и одинаковыми по величине вращениями плоскости поляризации света при идентичности всех других физических и химических свойств (за исключением реакций с другими оптически активными веществами и физических свойств в хиральной среде)

Рацемат - эквимолярная смесь двух энантиомеров(Энантиомеры (др.-греч. ἐνάντιος + μέρος - противоположный + часть, мера) - пара стереоизомеров, представляющих собой зеркальные отражения друг друга, не совмещаемые в пространстве). Рацематы не обладают оптической активностью, а также отличаются по свойствам от индивидуальных энантиомеров. Являются продуктами нестереоселективных реакций

Типы рецаматов

· Рацемический конгломерат представляет собой механическую смесь кристаллов двух энантиомеров соотношением 1:1, при этом каждый кристалл состоит из молекул только одного энантиомера.

· Рацемическое соединение (истинный рацемат) состоит из кристаллов, в каждом из которых находятся молекулы обоих энантиомеров и их соотношение равно 1:1. Такое соотношение энантиомеров в рацемических соединениях сохраняется до уровня кристаллической решётки.

· Псевдорацемат является твёрдым раствором двух энантиомерных соединений, то есть представляет собой гомогенную разупорядоченную смесь энантиомеров соотношением 1:1.

Физические свойства

· Оптическая активность . Рацематы не проявляют оптической активности, то есть не вращают плоскость поляризации света . Данное явление объясняется тем, что для энантиомеров оптическое вращение противоположно по знаку, но равно по величине. Поскольку вращение является аддитивной величиной, в случае рацемата из-за компенсации вкладов энантиомеров оно равняется нулю.

· Форма кристаллов . Поскольку энантиомеры образуют энантиоморфные кристаллы, рацемические конгломераты существуют в виде двух типов кристаллов, которые по форме являются зеркальными отражениями друг друга. Именно этот факт позволил Л. Пастеру вручную разделять кристаллы рацемических тартратов .

· Плотность . Согласно правилу Валлаха, сформулированному в 1895 году, кристаллы рацематов имеют более высокую плотность, чем кристаллы индивидуальных энантиомеров. Это связывают как с термодинамическими факторами, так и с кинетикой нуклеации и роста кристаллов рацемического соединения. Данное правило было подтверждено анализом кристаллографической базы данных .

· Температура плавления . Для рацемического конгломерата температура плавления всегда ниже температуры плавления индивидуальных энантиомеров, что видно по его диаграмме состояния. Например, энантиомерно чистый гексагелицен плавится при 265-267 °С, а рацемат - при 231-233 °С .

Если рацемат является истинным, что характерно для большинства органических рацематов, то температура его плавления может быть как выше, так и ниже температуры плавления энантиомеров. Так, в случае диметилтартрата температуры плавления чистого энантиомера и рацемата равны соответственно 43,3 °С и 86,4 °С. Рацемат миндальной кислоты, напротив, плавится при более низкой температуре, чем энантиомерно чистое вещество (118,0 °С и 132,8 °С соответственно). Добавление индивидуального энантиомера к истинному рацемату всегда приводит к понижению температуры плавления, в отличие от того, что наблюдается для конгломератов .

В редких случаях, когда рацематы проявляют свойства твёрдых растворов, они плавятся при той же температуре, что и индивидуальные энантиомеры (для камфоры - ≈178 °С) .

· Растворимость . Для большинства хиральных соединений характерны различия в растворимости рацемата и индивидуальных энантиомеров. Растворимость рацемических конгломератов выше растворимости чистых энантиомеров. Эмпирическое правило Мейерхоффера, применимое к недиссоциирующим органическим соединениям, гласит, что растворимость рацемата вдвое больше растворимости энантиомеров. Для истинных рацематов растворимость может быть больше или меньше растворимости энантиомеров

Реакции моносахаридов

Глюко́за , или виноградный сахар , или декстроза (D-глюкоза), С 6 H 12 O 6 - встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Является моносахаридом и шестиатомным сахаром (гексозой). Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), которые, например, в пищеварительном тракте быстро расщепляются на глюкозу и фруктозу.


D-Фруктоза

Получают в виде β-формы. Очень гигроскопичные бесцветные призмы или иглы. tпл. 103-105 (разлагается).
Удельное оптическое вращение для D-линии натрия при температуре 20°С: [α] D 20 -132,2 → -92,4 (с=4 в Н 2 О).
Растворимость: 375 20 , 740 55 в Н 2 О; растворим в МеОН, ЕtОН, пиридине, ацетоне, ледяной уксусной кислоте.
Безводная форма устойчива при температуре > 21,4 °С. Способна гидратироваться с образованием полугидрата (и дигидрата) при температуре < 20°С. Перекристаллизовать из МеОН. Положительная реакция Селиванова. Кристаллический сахар - β-D-пираноза, но в растворе содержится ≥ 15% фуранозной формы и значительное количество открытой линейной формы. В составе соединений найдена только фуранозная форма. Сладкий вкус.

Аскорби́новая кислота́ (от др.-греч. ἀ - не- + лат. scorbutus - цинга) - органическое соединение с формулой C 6 H 8 O 6 , является одним из основных веществ в человеческом рационе, которое необходимо для нормального функционирования соединительной и костной ткани. Выполняет биологические функции восстановителя и кофермента некоторых метаболических процессов, является антиоксидантом. Биологически активен только один из изомеров - L- аскорбиновая кислота, который называют витамином C . В природе аскорбиновая кислота содержится во многих фруктах и овощах .

Гликози́ды - органические соединения, молекулы которых состоят из двух частей: углеводного (пиранозидного или фуранозидного) остатка и неуглеводного фрагмента (т. н. агликона). В качестве гликозидов в более общем смысле могут рассматриваться и углеводы, состоящие из двух или более моносахаридных остатков. Преимущественно кристаллические, реже аморфные вещества, хорошо растворимые в воде и спирте.

Гликозиды представляют собой обширную группу органических веществ, встречающихся в растительном (реже в животном) мире и/или получаемых синтетическим путём. При кислотном, щелочном, ферментативном гидролизе они расщепляются на два или несколько компонентов - агликон и углевод (или несколько углеводов). Многие из гликозидов токсичны или обладают сильным физиологическим действием, например, гликозиды наперстянки, строфанта и другие.

Фруктоза (фруктовый сахар), C 6 H 12 O 6 - моносахарид, кетоноспирт, кетогексоза, изомер глюкозы.

Физические свойства

Белое кристаллическое вещество, хорошо растворимое в воде. Температура плавления фруктозы ниже температуры плавления глюкозы. В 2 раза слаще глюкозы и в 4-5 раз слаще лактозы.

Химические свойства

В водных растворах фруктоза существует в виде смеси таутомеров, в которой преобладает β-D-Фруктопираноза и содержится, при 20 °C, около 20 % β-D-Фруктофуранозы и около 5 % α-D-Фруктофуранозы



В отличие от глюкозы и других альдоз, фруктоза неустойчива как в щелочных, так и кислых растворах; разлагается в условиях кислотного гидролиза полисахаридов или гликозидов

Этими формулами обычно пользуются для пространственного изображения молекул, содержащих асимметрический атом углерода : это тетраэдрический (sp 3 -гибридный) атом углерода, связанный с четырьмя разными атомами или группами атомов.

Для изображения проекционной формулы тетраэдрическую модель молекулы располагают так, чтобы асимметрический атом находился в плоскости чертежа, а две связи от асимметрического атома углерода лежали в горизонтальной плоскости, выступающей к наблюдателю из плоскости чертежа. Две другие связи должны располагаться в вертикальной плоскости, уходящей от наблюдателя за плоскость чертежа.

При использовании проекций Фишера символ асимметрического атома углерода обычно опускают:

Следует всегда учитывать, что формулы Фишера являются проекциями на плоскость и их не следует рассматривать как пространственные модели.

Поэтому необходимо соблюдать следующие правила:

­ проекционную формулу, отвечающую конкретному стереоизомеру, нельзя выводить из плоскости чертежа и нельзя поворачивать в плоскости на 90 о и 270 о;

­ возможен поворот формулы на 180 о

­ если положение одной атомной группы не менять, то остальные три можно вращать по часовой или против часовой стрелки:

4.2. Оптическая активность* и хиральность

Под оптической активностью подразумевают свойство, способность вещества вращать (отклонять на определённый угол) плоскость поляризованного света.

Поворот плоскости поляризации происходит либо по часовой стрелке (правое вращение), либо против хода часовой стрелки (левое вращение).

Для соединения, содержащего один асимметрический атом углерода возможны два изомера, которые соотносятся между собой как предмет и его зеркальное отражение, что видно на примере молочной кислоты.

Два изомера, каждый из которых является зеркальным отражением другого, называются оптическими или зеркальными изомерами .

Такая пара зеркальных изомеров называется энантиомерами или оптическими антиподами .

Энантиомерам присущи одинаковые физические свойства, за исключением направления вращения плоскости поляризации: они отклоняют поляризованный свет на один и тот же угол, но в противоположных направлениях.

Соединения, которые несовместимы со своим зеркальным отражением, принято называть хиральными .

Хиральность (от cheir – рука) – это основное понятие стереохимии, обозначающее свойство объекта быть несовместимым со своим зеркальным отображением; является обязательным условием оптической активности молекул.



Смесь веществ, состоящая из равных количеств обоих энантиомеров, называется рацемической смесью . Оптическая активность такой смеси равна 0.

Стереоизомеры, не являющиеся энантиомерами, называются диастереомерами (подробно см. ниже, разд. 4.4.).

Таким образом, все хиральные молекулы являются молекулами оптически активных соединений.

Между хиральностью и оптической активностью существует однозначное соответствие. Характерной особенностью хиральных молекул является отсутствие оси, центра и плоскости симметрии, которые являются элементами симметрии .

Ось симметрии. Если вращение вокруг оси, проходящей через молекулу, на угол 2π/n=360 o /n вновь приводит её в исходное состояние, то такую ось называют осью симметрии n-го порядка С n . Понятно, что при значении n=1 в любом случае поворот вокруг оси возвращает молекулу в первоначальное состояние.

Например, молекула воды (а) имеет ось симметрии второго порядка (n=2), хлорметана (б) – третьего порядка, а в бензоле (в) наряду с шестью осями, располагающимися в плоскости цикла (n=2), имеется ещё одна ось (n=6), которая перпендикулярна плоскости цикла.

Плоскость симметрии. Если плоскость, проходящая через молекулу (объект) делит её на две части, соотносящиеся между собой как зеркальные изомеры, то её называют плоскостью симметрии . Вода имеет две плоскости симметрии, а хлорметан – три.

Центр симметрии i – это точка в центре молекулы, на равном расстоянии от которой на одной прямой располагаются две эквивалентные, равноценные точки данной молекулы.

В молекуле не может быть более одного центра симметрии.

Таким образом, с точки зрения наличия или отсутствия в молекулах элементов симметрии принято говорить о хиральности и ахиральности . В большинстве случаев по смыслу они совпадают с понятиями «асимметричность» и «симметричность». Вместе с тем хиральность – это понятие гораздо шире, чем асимметричность, поскольку хиральная молекула может содержать некоторые элементы симметрии. По этой же причине в стереохимии термин «асимметрический» атом очень часто заменяют термином «центр хиральности». Следовательно, под хиральностью следует подразумевать свойство объекта быть несовместимым со своим зеркальным отображением. Ахиральная молекула содержит по крайней мере один элемент симметрии (либо центр, либо плоскость симметрии). Частным случаем ахиральности является прохиральность: способность, свойство ахиральной молекулы переходить в хиральную путём одноразового изменения одного какого-либо структурного фрагмента. Как правило, такая операция возможна при наличии прохирального центра – то есть центра, содержащего два различных и два одинаковых заместителя. Замещение одного из таких одинаковых заместителей на другой, отличающийся от всех имеющихся, превращает этот центр в хиральный:



Конфигурация и конформация

Стереоизомеры могут различаться конфигурациями (конфигурационные изомеры) или конформациями (конформационные изомеры).

Конфигурация – пространственное расположение атомов и/или атомных групп вокруг хирального центра, плоскости двойной связи или плоскости цикла и характеризующее определённый стереоизомер. Это понятие в большей степени имеет качественный характер и по сути отражает стереохимическую особенность конкретного расположения атомов в пространстве вокруг хирального центра данной молекулы.

Ниже показаны пары соединений, представляющие собой кофигурационные изомеры:

Конформация* - определённая геометрия молекулы, обусловленная внутренним вращением атомов или атомных групп вокруг простых связей. При этом стереохимическая конфигурация молекулы остаётся неизменной.

Для изображения конформаций пользуются проекциями Ньюмена. Для этана возможны две граничные конформации – заслоненная (I) и заторможенная (II).

Бутан отличается от этана наличием двух метильных групп, в связи с чем для данной молекулы возможно большее число заторможенных конформаций, что показано ниже. Более устойчивая конформация I обозначается как анти- : здесь метильные группы максимально удалены друг от друга (двугранный угол равен 180 о). Две другие конформации – скошенные, или иначе гош-конформации (II и III), в которых метильные группы образуют угол 60 о:

При изображении стереоизомеров часто пользуются формулами Фишера. В этих формулах хиральный центр рисуют с четырьмя связями, образующими друг с другом прямые углы. Вертикальные линии изображают проекцию на плоскость заместителей, находящихся за плоскостью, в то время как горизонтальные линии - это проекция заместителей, находящихся перед плоскостью. Символ асимметрического атома углерода в проекционных формулах Фишера принято опускать.

До 1951 г. установление абсолютной конфигурации было невозможно. Розанов в 1906 г предложил использовать в качестве относительного стандарта правовращающий (+) глицериновый альдегид, которому произвольно приписали конфигурацию D. Левовращающий антипод обозначили буквой L.

D-глицериновый альдегид L-глицериновый альдегид

В формулах Фишера самая длинная углеродная цепь записывается вертикально с атомом углерода №1 наверху; вертикальные связи асимметрического атома углерода располагаются за плоскостью чертежа, а горизонтальные над плоскостью.

D-молочная кислота L-молочная кислота

Если в проекции Фишера поменять местами две соседние группы, то получим зеркальное изображение исходного соединения. Зеркальное изображение начальной структуры получается и при повороте проекции Фишера на 90 о.

Диастереоизомерия

В виде диастереомеров могут существовать соединения, молекулы которых имеют два и более стереоцентров. С увеличением числа асимметрических атомов углерода число стереоизомеров увеличивается с появлением каждого нового стереоцентра и может быть вычислено по формуле N = 2 n , где n – число стереоцентров. Молекулы с двумя асимметрическими атомами углерода могут существовать в виде четырех стереоизомеров. Например, в молекуле 2,3-дибромпентана имеется два стереоцентра и, следовательно, у этого соединения 4 стереоизомера.

2,3-дибромпентан

(2S,3R)-2,3-дибромпентан (2R,3S)-2,3-ди… (2S,3S)-2,3-ди… (23,3R)-2,3-ди…

(I) (II) (III) (IV)

Пары стереоизомеров (I) и (II), также (III) и (IV) относятся друг к другу как предмет и несовместимое с ним зеркальное изображение, т.е. являются парами энантиомеров. Стереоизомеры в любых других парах являются диастереомерами. Две различные конфигурации одной молекулы, но не являющиеся энантиомерами, называются диастереомерами. Два диастереомера различаются по всем свойствам и сравнительно легко разделяются, как два различных соединения.

В проекционных формулах (I) и (II) одинаковые лиганды находятся по одну сторону проекции, такие стереоизомеры называют эритро -формами. В формулах (III) и (IV) эти же лиганды находятся по разные стороны вертикальной линии проекции Фишера, соответствующие им соединения называют трео -формами.



А. Мезо-соединения

У структуры с двумя стереоцентрами не всегда может быть 4 стереоизомера. Например, у 2,3-дибромбутана имеется два стереоцентра, но не 4 а только 3 стереоизомера.

(2S,3R)-2,3-дибромбутан (2S,3S)-2,3-ди… (2R,3R)-2,3-ди…

мезо- форма

Нумеровать атомы 2,3-дибромбутана можно сверху вниз или снизу вверх и тогда видно, что первые две структуры изображают один и тот же стереоизомер. Этот стереоизомер ахирален и оптически не активен, т. к. имеет плоскость симметрии

Упр. 7. Изобразите формулы Фишера пространственных изомеров: (а) глицеринового альдегида (2,3-дигидроксипропаналя), (б) молочной (2-гидроксипропа-новой) кислоты, (в) яблочной (2-гидроксибутандиовой или гидроксиянтарной) кислоты, (г) винной (2,3-дигидроксибутандиовой или дигидроксиянтарной) кислоты.

P-Диастереомеры

Алкены и их производные с общей формулой ABC=CDE могут существовать в виде p-диастереомеров. p-Диастереомеры возникают при условии неидентичности лигандов, связанных с отдельными атомами углерода двойной связи. p-Диастерео-меры отличаются друг от друга различным расположением лигандов относительно проскости симметрии p-связи.

О заместителях, расположенных по одну сторону от двойной связи, говорят, что они находятся в цис -положении относительно друг друга; если они расположены по разные стороны от плоскости двойной связи, то это транс -положение. В последнее время вместо терминов цис- и транс - рекомендуется Z,E-система. Если две наиболее старшие группы (по системе Кана-Ингольда-Прелога) расположены по одну сторону от p-связи, то конфигурация заместителей обозначается символом Z, если же эти группы находятся по разные стороны от плоскости p-связи, то конфигурация обозначается символом Е.

Таким образом, мы обсудили два вида диастереоизомерии:

Диастереоизомерия возникающая в результате комбинации элементов хиральности (в этом случае диастереоизомерия и энантиомерия накладываются друг на друга);

Диастереоизомерия цис-транс -изомеров.

Упр. 8. . Напишите структурные формулы (а) цис- 1,2-дихлорэтена и транс -1,2-дихлорэтена, (б) цис- 1,2-дифторэтена и транс -1,2-дифторэтена, (в) цис- 1,2-дихлор-

1,2-дифторэтена и транс- 1,2-дихлор-1,2-дифторэтена.

2.4 Цис-транс изомерия и конформации циклоалканов

Циклопропан, средство для ингаляционного наркоза (т. кип. -33 о С) имеет плоскую структуру. Каждый из трех атомов водорода по одну сторону от плоскости кольца занимает транс положение по отношению к каждому атому водорода, находящемуся по другую сторону плоскости кольца. Любые два атома водорода, расположенные по одну сторону кольца, находятся в цис положении и заслоняют друг друга.

циклопропан цис -водороды транс -водороды

Существует только один монозамещенный циклопропан. Дизамещенный циклопропан c одинаковыми заместителями может существовать в виде двух диастереомеров. Традиционно их описывают как цис - и транс- формы. У цис -формы есть плоскость симметрии, и она, поэтому не может существовать в виде пары энантиомеров, в то время как транс -форма - может.

цис -1,2-диметилциклопропан транс -1,2-диметилциклопропан

Б. Циклопентан

Молекула циклопентана почти плоская. В молекуле 1,2-диметилциклопентана два стереоцентра и поэтому он существует в виде трех стереоизомеров.

энантиомеры мезо соединение

Транс изомер существует в виде двух энантиомеров, а цис -1,2-диметилцикло-пентан является мезо соединением, т. к. у него есть плоскость симметрии. 1,3-Диме-тилциклопентан также существует в виде трех стереоизомеров.

энантиомеры мезо соединение

В. Циклогексан

Если в циклогексановом кольце имеется более одного заместителя, то при оценке стабильности той или иной конформации учитывают взаимное расположение заместителей в кольце и их строение. Так в молекуле транс -1,2-диметилцикло-гексана оба заместителя могут занимать или аксиальное, или экваториальное положение; разумеется, более выгодной является диэкваториальная конформация.

транс -1,2-диметилциклогексан цис -1,2-диметилциклогексан

У цис -изомера в любой из двух конформаций кресла одна из метильных групп занимает аксиальное положение, другая – экваториальное.

Молекула циклогексана может принимать несколько конформаций.

«кресло» «ванна»

При обычной температуре на 99,9% она существует в форме двух быстро интерконвертирующих кресловидных конформаций. Конформация кресла наиболее симметрична, каждый атом углерода имеет по две неэквивалентные связи С–Н.

У формы кресла есть ось симметрии третьего порядка. Шесть связей С-Н в циклогексане параллельны этой оси: три из них направлены вверх, а три - вниз, эти атомы водорода занимают аксиальное (а) положение. Еще шесть связей С-Н почти перпендикулярны оси симметрии, эти атомы водорода занимают экваториальное (е) положение.

В процессе конформационных превращений все аксиальные заместители а становятся экваториальными, и соответственно экваториальные е – аксиальными. С этой точки зрения конформационные переходы циклогексана называют инверсией .

Переход осуществляется через промежуточно возникающую твист-конформацию. Барьер конформационного перехода в циклогексане равен приблизительно 42 кДж/моль и мало меняется при введении заместителей.

Из ньюменовской проекции “кресла” циклогексана ясно, что соседние атомы водорода не заслонены.

проекция Ньюмена циклогексана

Кроме формы кресла существует также форма ванны, полу кресла (или полу твист) и твист-форма циклогексана. Эти формы известны под названием подвижных форм.

Рис.4. Энергетическая характеристика конформаций циклогексана

В форме ванны два атома водорода называют бушпринтными и два - флагштоковыми. Форма ванны является переходной между различными твист-формами, а полутвист-форма - переходной между формой кресла и твист-формой. Из трех подвижных форм наиболее важную роль играет твист-форма.

Кроме того, через полутвист-конформацию идет важный процесс взаимного превращения кресло-кресло (инверсия), в результате которого все (а) связи становятся (е) (в то же время все цис-транс соотношения между ними остаются неизменными).

Для монозамещенных циклогексанов имеются две неэквивалентные конформации с заместителями в аксиальном и экваториальном положениях. Обычно более устойчива экваториальная форма.

Разница в относительной стабильности конформеров с аксиальным и экваториальным положением заместителей объясняется диаксиальным взаимодействием аксиальных атомов водорода с заместителями.

проекции Ньюмена конформеров метилциклогексана

Барьер взаимопревращения (а)- и (е)-конформеров очень низок. Большинство заместителей предпочитают экваториальное положение. трет -Бутильная группа в циклогексане фактически всегда экваториальна.

Современные представления о строении органических соединений. Основы стереохимии органических соединений. Ассиметрический атом углерода. Хиральность. Проекционные формулы Фишера.

Теория химического строения А.М. Бутлерова

В 1861 году А.М. Бутлеровым была предложена теория химического строения органических соединений, которая состоит из следующих основных положений.

1) В молекулах веществ существует строгая последовательность химического связывания атомов, которая называется химическим строением.

2) Химические свойства вещества определяются природой элементарных составных частей, их количеством и химическим строением.

3) Если у веществ с одинаковым составом и молекулярной массой различное строение, то возникает явление изомерии.

4) Так как в конкретных реакциях изменяются только некоторые части молекулы, то исследование строения продукта помогает определить строение исходной молекулы.

5) Химическая природа (реакционная способность) отдельных атомов в молекуле меняется в зависимости от окружения, т.е. от того, с какими атомами других элементов они соединены.

Теория Бутлерова дает принципиальную возможность познания геометрии молекулы (микроскопических свойств) через познание химических свойств (макроскопических свойств). Основные положения теории строение сохраняют свое значение до сих пор.

Электронные теории химической связи.

Электронное строение органических соединений изображают с помощью электронных формул Льюиса. В них с помощью точек указывают положение всех валентных электронов: электронов химических связей и неподеленных пар электронов. При этом считают, что неподеленные пары электронов составляют часть внешней оболочки только одного атома, а электроны, участвующие в образовании ковалентной связи, являются частью внешней оболочки обоих атомов. Например, в приведенной ниже формуле Льюиса для тетрахлорметана все атомы имеют октет электронов.

Для каждого атома в структуре Льюиса определяют формальный заряд. При этом полагают, что атому принадлежат все неподеленные электроны и половина электронов ковалентных связей.Избыток электронов, принадлежащих атому в молекуле по сравнению со свободным атомом, обусловливает отрицательный заряд, а недостаток - положительный заряд. Сумма формальных зарядов всех атомов дает заряд частицы в целом.

Основные принципы квантовой органической химии.

Современные теории ковалентной связи основаны на представлениях квантовой механики. Согласно принципам квантовой механики состояние электрона в атоме определяется волновой функцией, которую называют атомной орбиталью. Образование химической связи между атомами рассматривается как результат взаимодействия двух орбиталей, на каждой из которых находится по одному электрону. При этом происходит образование молекулярных орбиталей (МО). Из двух атомных орбиталей образуются две молекулярные орбитали, одна из которых (связывающая ) имеет более низкую энергию, а другая (разрыхляющая ) – более высокую энергию, чем исходные АО.

Электроны связи занимают более низкую по энергии связывающую орбиталь, таким образом, взаимодействие орбиталей приводит к выигрышу в энергии.

В зависимости от типа комбинирующихся атомных орбиталей образуются разные типы МО. Определяющую роль в этом играют симметрия и узловые свойства орбиталей. Атомные s -орбитали имеют симметрию шара и не имеют узловых поверхностей, проходящих через центр атома. Атомные p -орбитали имеют цилиндрическую симметрию и три состояния p x , p y и p z . Каждая p -орбиталь имеет узловую плоскость, проходящую через центр атома и перпендикулярную соответственно оси x , y или z .

Узловая поверхность – это место, где вероятность нахождения электрона равна нулю, а волновая функция меняет знак. Чем больше узлов, тем выше энергия орбитали. Таким образом, p -орбиталь состоит из двух частей, в которых знаки волновых функций противоположны.

При рассмотрении электронного строения многоатомных молекул необходимо использовать такой набор орбиталей, при котором достигается их максимальное перекрывание. В связи с этим водится понятие гибридизации орбиталей. Атом углерода в возбужденном состоянии содержит четыре неспаренных электрона на внешнем энергетическом уровне и способен образовать четыре ковалентных связи.

В образовании связей участвуют гибридные орбитали.

Первое валентное состояние – sp 3 -гибридизация . В результате гибридизации с участием одной s и трех p орбиталей атома углерода образуются четыре эквивалентные sp 3 -гибридные орбитали, направленные к вершинам тетраэдра под углами 109,5 о:

В состоянии sp 3 -гибридизации атом углерода образует четыре s -связи с четырьмя заместителями и имеет тетраэдричекую конфигурацию с валентными углами, равными или близкими 109,5 о:

Метан

Второе валентное состояние – sp 2 -гибридизация . В результате гибридизации с участием одной s- и двух p-орбиталей атома углерода образуются три эквивалентные sp 2 -гибридные орбитали, лежащие в одной плоскости под углами 120 о, а не участвующая в гибридизации p-орбиталь расположена перпендикулярно плоскости гибридных орбиталей.

В состоянии sp 2 -гибридизации атом углерода образует три s -связи за счет гибридных орбиталей и одну p -связь за счет не участвующей в гибридизации p-орбитали и имеет три заместителя.

Третье валентное состояние углерода – sp-гибридизация . В результате гибридизации с участием одной s- и одной p–орбитали образуются две эквивалентные sp-гибридные орбитали, лежащие под углом 180 0 , а не участвующие в гибридизации p-орбитали расположены перпендикулярно плоскости гибридных орбиталей и друг другу. В состоянии sp-гибридизации атом углерода образует две s -связи за счет гибридных орбиталей и две p -связи за счет не участвующих в гибридизации p-орбиталей и имеет два заместителя:

Ацетилен

Основы стереохимии.

Стереохимия – часть химии, посвященная изучению пространственного строения молекул и влияния этого строения на физические и химические свойства вещества, на направление и скорость их реакций.

Конформации (поворотная изомерия).

Переход от простейшего органического углеводорода – метана, к его ближайшему гомологу – этану ставит проблемы пространственного строения, для решения которых недостаточно знать рассмотренные ранее параметры. Не меняя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм молекулы этана, отличающихся друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их связи С-С. В результате такого вращения возникают поворотные изомеры (конформеры) . Энергия различных конформеров неодинакова, но энергетический барьер, разделяющий различные поворотные изомеры, для большинства органических соединений невелик. Поэтому при обычных условиях, как правило, нельзя зафиксировать молекулы в одной строго определенной конформации. Обычно в равновесии сосуществуют несколько легко переходящих друг в друга поворотных форм.

Рассмотрим способы графического изображения конформаций и их номенклатуру. Для молекулы этана можно предвидеть существование двух максимально различающихся по энергии конформаций. Они изображены ниже в виде перспективных проекций (1) ("лесопильные козлы"), боковых проекций (2) и формул Ньюмена .

Изображенную слева конформацию называют заслоненной . Это название напоминает о том, что атомы водорода обеих СН 3 -групп находятся друг против друга. Заслоненная конформация имеет повышенную внутреннюю энергию, и поэтому невыгодна. Конформацию, изображенную справа, называют заторможенной , подразумевая, что свободное вращение вокруг связи С-С "тормозится" в этом положении, т.е. молекула существует преимущественно в этой конформации.

С усложнением молекулы число возможных конформаций возрастает. Так, для н -бутана можно изобразить уже шесть конформаций, отличающихся взаимным расположением СН 3 -групп, т.е. поворотом вокруг центральной связи С-С. Ниже конформации н-бутана изображены в виде проекций Ньюмена. Изображенные слева (заслоненные) конформации энергетически невыгодны, практически реализуются лишь заторможенные.

Различные заслоненные и заторможенные конформации бутана неодинаковы по энергии. Соответствующие энергии всех конформаций, образующихся при вращении вокруг центральной С-С связи.

Итак, конформации – это различные пространственные формы молекулы, имеющей определенную конфигурацию. Конформерами являются стереоизомерные структуры, соответствующие энергетическим минимумам на диаграмме потенциальной энергии, находящиеся в подвижном равновесии и способные к взаимопревращению путем вращения вокруг простых связей.

Иногда барьер таких превращений становится достаточно высоким, чтобы разделить стереоизомерные формы (пример - оптически активные дифенилы). В таких случаях говорят уже не о конформерах, а о реально существующих стереоизомерах .

Геометрическая изомерия.

Важное следствие жесткости двойной связи (отсутствия вращения вокруг нее) – существование геометрических изомеров . Самые распространенные из них – это цис-,транс-изомеры соединений этиленового ряда, содержащих у ненасыщенных атомов неодинаковые заместители. Простейшим примером могут служить изомеры бутена-2.

Геометрические изомеры имеют одинаковое химическое строение, различаясь по пространственному расположению атомов, т.е. по конфигурации . Это различие и создает разницу в физических (а также химических свойствах). Геометрические изомеры, в отличие от конформеров, могут быть выделены в чистом виде и существуют как индивидуальные устойчивые вещества. Для их взаимного превращения необходима энергия порядка 125 – 170 кДж/моль, которуюможно сообщить нагреванием или облучением.

В простейших случаях номенклатура геометрических изомеров не представляет затруднений: цис- формами называют геометрические изомеры, у которых одинаковые заместители лежат по одну сторону от плоскости пи-связи, транс- изомеры имеют одинаковые заместители на разных сторонах от плоскости пи-связи. В более сложных случаях применяется Z,E-номенклатура . Ее главный принцип: для обозначения конфигурации указывают цис- (Z, от немецкого Zusammen - вместе) или транс- (Е, от немецкого Entgegen - напротив) расположение старших заместителей при двойной связи.

В Z,E-системе старшими считаются заместители с большим атомным номером. Если атомы, непосредственно связанные с ненасыщенными углеродами, одинаковы, то переходят ко "второму слою", в случае необходимости - к "третьему слою" и т.д.

3. Оптическая изомерия (энантиомерия).

Среди органических соединений встречаются вещества, способные вращать плоскость поляризации света. Это явление называют оптической активностью, а соответствующие вещества – оптически активными . Оптически активные вещества встречаются в виде пар оптических антиподов - изомеров, физические и химические свойства которых в обычных условиях одинаковы, за исключением одного – знака вращения плоскости поляризации. (Если один из оптических антиподов имеет, например, удельное вращение +20 о, то другой - удельное вращение -20 о).

Проекционные формулы.

Для условного изображения асимметрического атома на плоскости пользуются проекционными формулами Э.Фишера . Их получают, проецируя на плоскость атомы, с которыми связан асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. левой модели на предыдущем рисунке:

Приведем несколько примеров проекционных формул:

(+)-аланин(-)2-бутанол(+)-глицериновый альдегид

При названиях веществ приведены их знаки вращения. Это значит, например, что левовращающий антипод бутанола-2 имеет пространственную конфигурацию , выражаемую именно приведенной выше формулой, а ее зеркальное изображение отвечает правовращающему бутанолу-2. Определение конфигурации оптических антиподов проводится экспериментально.

В принципе, каждый оптический антипод может быть изображен двенадцатью (!) различными проекционными формулами - в зависимости от того, как расположена модель при построении проекции, с какой стороны мы смотрим на нее. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную функцию, если она находится в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.Для того чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулы можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла:

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы:

3. Одна (или любое нечетное число) перестановок заместителей у асимметрического центра приводит к формуле оптического антипода:

4. Поворот в плоскости чертежа на 90 о превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. не считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом:

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее; четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

6. Проекционные формулы нельзя выводить из плоскости чертежа.

Рацематы.

Если в формуле вещества есть асимметрический атом, это отнюдь не означает, что такое вещество будет обладать оптической активностью. Если асимметрический центр возникает в ходе обычной реакции (замещение в группе СН 2 , присоединение по двойной связи и т.п.), то вероятность создания обеих антиподных конфигураций одинакова. Поэтому, несмотря на асимметрию каждой отдельной молекулы, получающееся вещество оказывается оптически неактивным. Такого рода оптически неактивные модификации, состоящие из равного количества обоих антиподов, называются рацематами.

Другие типы оптически активных веществ.

В этом разделе перечислены некоторые другие классы органических соединений, также обладающих оптической активностью (т.е. существующие в виде пар оптических антиподов).

Атом углерода не обладает монополией на создание хиральных центров в молекулах органических соединений. Центром хиральности могут быть также атомы кремния, олова, четырехковалентного азота в четвертичных аммониевых солях и окисях третичных аминов:

В этих соединениях центр асимметрии имеет тетраэдрическую конфигурацию, как и асимметрический атом углерода. Существуют, однако, и соединения с иной пространственной структурой хирального центра.

Пирамидальную конфигурацию имеют хиральные центры, образованные атомами трехвалентного азота, фосфора, мышьяка, сурьмы, серы. В принципе, центр асимметрии можно считать тетраэдрическим, если в качестве четвертого заместителя принять неподеленную электронную пару гетероатома:

Оптическая активность может возникать и без хирального центра, за счет хиральности структуры всей молекулы в целом (молекулярная хиральность или молекулярная асимметрия ). Наиболее характерными примерами являются наличие хиральной оси либо хиральной плоскости .

Хиральная ось возникает, например, в алленах, содержащих различные заместители при sp 2 -гибридных углеродных атомах. Легко видеть, что приведенные ниже соединения являются несовместимыми зеркальными изображениями, а значитоптическими антиподами:

Другой класс соединений, имеющих хиральную ось - оптически активные бифенилы, которые имеют в орто -положениях объемистые заместители, затрудняющие свободное вращение вокруг С-С связи, соединяющей бензольные ядра:

Хиральная плоскость характеризуется тем, что у нее можно различить "верх" и "низ", а также "правую" и "левую" стороны. Примером соединений с хиральной плоскостью могут служить оптически активный транс- циклооктен и оптически активное производное ферроцена:

Диастереомерия.

Соединения с несколькими асимметрическими атомами обладают важными особенностями, отличающими их от рассмотренных ранее более простых оптически активных веществ с одним центром асимметрии.

Допустим, что в молекуле некоего вещества имеются два асимметрических атома; обозначим их условно А и Б. Легко видеть, что возможны молекулы со следующими комбинациями:

((-)

((-)

((-)

((+)

Молекула 1

F А

Молекула 3

АА

ББ

((+)

((+)

((+)

((-)

Молекула 2

АА

ББ

Молекула 4

АА

ББ

Молекулы 1 и 2 представляют собой пару оптических антиподов; то же самое относится и к паре молекул 3 и 4. Если же сравнивать друг с другом молекулы из разных пар антиподов - 1 и 3, 1 и 4, 2 и 3, 2 и 4, то мы увидим, что перечисленные пары не являются оптическими антиподами: конфигурация одного асимметрического атома у них совпадает, конфигурация другого - не совпадает. Это пары диастереомеров , т.е. пространственных изомеров, не составляющих друг с другом оптических антиподов.

Диастереомеры отличаются друг от друга не только оптическим вращением, но и всеми другими физическими константами: у них разные температуры плавления и кипения, разные растворимости и др. Различия в свойствах диастереомеров зачастую ничуть не меньше, чем различия в свойствах между структурными изомерами.

Примером соединения рассматриваемого типа может случить хлоряблочная кислота

Ее стереоизомерные формы имеют следующие проекционные формулы:

эритро- формытрео- формы

Названия эритро - и трео - происходят от названий углеводов эритрозы и треозы. Эти названия употребляют для указания взаимного положения заместителей у соединений с двумя асимметрическими атомами: эритро -изомерами называют те, у которых два одинаковых боковых заместителя стоят в стандартной проекционной формуле на одной стороне (справа или слева); трео -изомеры имеют одинаковые боковые заместители на разных сторонах проекционной формулы. Два эритро- изомера представляют собой пару оптических антиподов, при их смешении образуется рацемат. Парой оптических изомеров являются и трео- формы; они тоже дают при смешении рацемат, отличающийся по свойствам от рацемата эритро- формы. Таким образом, всего существуют четыре оптически активных изомера хлоряблочной кислоты и два рацемата.

При дальнейшем росте числа асимметрических центров число пространственных изомеров возрастает, причем каждый новый асимметрический центр вдвое увеличивает число изомеров. Оно определяется формулой 2 n , где n - число асимметрических центров.

Число стереоизомеров может уменьшаться из-за частичной симметрии, появляющейся в некоторых структурах. Примером может служить винная кислота, у которой число индивидуальных стереоизомеров сокращается до трех. Их проекционные формулы:

Формула I идентична с формулой Iа, так как превращается в нее при повороте на 180 о в плоскости чертежа и, следовательно, не изображает нового стереоизомера. Это оптически неактивная модификация называетсямезо-форма . Мезо- формы имеются у всех оптически активных веществ с несколькими одинаковыми (т.е. связанными с одинаковыми заместителями) асимметрическими центрами. Проекционные формулы мезо- форм всегда можно узнать по тому, что их можно разделить горизонтальной линией на две половины, которые по записи на бумаге формально идентичны, в действительности же зеркальны:

Формулы II и III изображают оптические антиподы винной кислоты; при их смешении образуется оптически неактивный рацемат - виноградная кислота.

Номенклатура оптических изомеров.

Самая простая, наиболее старая, однако и ныне еще употребляемая система номенклатуры оптических антиподов, основана на сравнении проекционной формулы называемого антипода с проекционной формулой некоего стандартного вещества, выбранного в качестве "ключа". Так, для a -оксикислот и a -аминокислот ключом является верхняя часть их проекционной формулы (в стандартной записи):

L- оксикислоты (Х = ОН)D- оксикислоты (Х = ОН)

L- аминокислоты (Х = NH 2) D- аминокислоты (Х = NH 2)

Конфигурацию всех a -оксикислот, имеющих в стандартно написанной проекционной формуле Фишера гидроксильную группу слева, обозначают знаком L ; если же гидроксил расположен в проекционной формуле справа - знаком D

Ключом для обозначения конфигурации сахаров служит глицериновый альдегид:

L- (-)-глицериновый альдегид D- (+)-глицериновый альдегид

В молекулах сахаров обозначение D- или L- относится к конфигурации нижнего асимметрического центра.

Система D- ,L- обозначений имеет существенные недостатки: во-первых, обозначение D- или L- указывает конфигурацию только одного асимметрического атома, во-вторых, для некоторых соединений получаются разные обозначения, в зависимости от того, взят ли в качестве ключа глицериновый альдегид или оксикислотный ключ, например:

Эти недостатки системы ключей ограничивают ее применение в настоящее время тремя классами оптически активных веществ: сахарами, аминокислотами и оксикислотами. На общее же применение рассчитана R,S-система Кана, Ингольда и Прелога.

Для определения R- или S-конфигурации оптического антипода необходимо расположить тетраэдр заместителей вокруг асимметрического углеродного атома таким образом, чтобы младший заместитель (обычно это водород) имел направление "от наблюдателя". Тогда, если движение при переходе по кругу трех остальных заместителей от старшего к среднему по старшинству и затем к самому младшему происходит против часовой стрелки - это S -изомер (ассоциируется с таким же движением руки при написании буквы S), если по часовой стрелке - это R- изомер (ассоциируется с движением руки при написании буквы R).

Для определения старшинства заместителей у асимметрического атома используются правила подсчета атомных номеров, уже рассмотренные нами в связи с Z,E-номенклатурой геометрических изомеров.

Для выбора R,S-обозначений по проекционной формуле необходимо путем четного числа перестановок (не изменяющих, как мы знаем, стереохимического смысла формулы) расположить заместители так, чтобы младший из них (обычно водород) оказался внизу проекционной формулы. Тогда старшинство остальных трех заместителей, падающее по часовой стрелке, соответствует обозначению R, против часовой стрелки - обозначению S:

5. Методы получения стереоизомеров

Получение чистых стереоизомеров – важная задача, так как, как правило, только одна из стереоизомерных форм является биологически активной. Между тем, в обычных условиях образуются, как правило, смеси стереоизомеров - диастереомеров или оптических антиподов. Для получения чистых стереоизомерных форм эти смеси.

II.1. Конформации (поворотная изомерия)

Переход от простейшего органического углеводорода - метана, к его ближайшему гомологу - этану ставит проблемы пространственного строения, для решения которых недостаточно знать рассмотренные в разделе параметры. В самом деле, не меняя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм молекулы этана, отличающихся друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их связи С-С. В результате такого вращения возникают поворотные изомеры (конформеры) . Энергия различных конформеров неодинакова, но энергетический барьер, разделяющий различные поворотные изомеры, для большинства органических соединений невелик. Поэтому при обычных условиях, как правило, нельзя зафиксировать молекулы в одной строго определенной конформации: обычно в равновесии сосуществуют несколько легко переходящих друг в друга поворотных форм.

Способы графического изображения конформаций и их номенклатура таковы. Рассмотрение начнем с молекулы этана. Для нее можно предвидеть существоввание двух максимально различающихся по энергии конформаций. Они изображены ниже в виде перспективных проекций (1) ("лесопильные козлы"), боковых проекций (2) и формул Ньюмена (3).

В перспективной проекции (1а, 1б) связь С-С надо представить себе уходящей вдаль; стоящий слева углеродный атом приближен к наблюдателю, стоящий справа - удален от него.

В боковой проекции (2а, 2б) четыре Н-атома лежат в плоскости чертежа; атомы углерода на самом деле несколько выходят из этой плоскости, но обычно упрощенно считают их также лежащими в плоскости чертежа. "Жирные" клиновидные связи утолщением клина показывают на выход из плоскости по направлению к наблюдателю того атома, к которому обращено утолщение. Пунктирные клиновидные связи отмечают удаление от наблюдателя.

В проекции Ньюмена (3а, 3б) молекулу рассматривают вдоль связи С-С (в направлении, указанном стрелкой на формулах 1а,б). Три линии, расходящиеся под углом 120 о из центра круга, обозначают связи ближайшего к наблюдателю углеродного атома; линии, "высовывающиеся" из-за круга - связи удаленного углеродного атома.

Изображенную слева конформацию называют заслоненной : название это напоминает о том, что атомы водорода обеих СН 3 -групп находятся друг против друга. Заслоненная конформация имеет повышенную внутреннюю энергию, и поэтому невыгодна. Конформацию, изображенную справа, называют заторможенной , подразумевая, что свободное вращение вокруг связи С-С "тормозится" в этом положении, т.е. молекула существует преимущественно в этой конформации.

Минимум энергии, необходимый для полного вращения молекулы вокруг определенной связи называется барьером вращения для данной связи. Барьер вращения в молекуле, подобной этану, может быть выражен через изменение потенциальной энергии молекулы как функции изменения двугранного (торсионного) угла системы. Двугранный угол (обозначаемый тау) изображен на рисунке, приведенном ниже:

Энергетический профиль вращения вокруг связи С-С в этане показан на следующем рисунке. Вращение "заднего" атома углерода изображено изменением двугранного угла между двумя показанными атомами водорода. Для простоты остальные атомы водорода опущены. Барьер вращения, разделяющий две формы этана, составляет только 3 ккал/моль (12.6 кДж/моль). Минимумы кривой потенциальной энергии соответствуют заторможенным конформациям, максимумы - заслоненным. Поскольку при комнатной температуре энергия некоторых столкновений молекул может достигать 20 ккал/моль (около 80 кДж/моль), то этот барьер в 12.6 кДж/моль легко преодолевается и вращение в этане рассматривают как свободное.

Подчеркнем, что каждая точка на кривой потенциальной энергии соответствует определенной конформации. Точки, соответствующие минимумам, отвечают конформационным изомерам, то есть преобладающим компонентам в смеси всех возможных конформаций .

С усложнением молекулы число возможных заметно отличающихся по энергии конформаций возрастает. Так, для н -бутана можно изобразить уже шесть конформаций, отличающихся взаимным расположением СН 3 -групп, т.е. поворотом вокруг центральной связи С-С. Ниже конформации н-бутана изображены в виде проекций Ньюмена. Изображенные слева (заслоненные) конформации энергетически невыгодны, практически реализуются лишь заторможенные.

Различные заслоненные и заторможенные конформации бутана неодинаковы по энергии. Соответствующие энергии всех конформаций, обрпзующихся при вращении вокруг центральной С-С связи, представлены ниже:

По мере усложнения молекулы число возможных конфомаций возрастает.

Итак, конформации - это различные неидентичные пространственные формы молекулы, имеющие определенную конфигурацию. Конформеры - это стереоизомерные структуры, находящиеся в подвижном равновесии и способные к взаимопревращению путем вращения вокруг простых связей.

Иногда барьер таких превращений становится достаточно высоким, чтобы разделить стереоизомерные формы (пример - оптически активные дифенилы; ). В таких случаях говорят уже не о конформерах, а о реально существующих стереоизомерах .

II.2. Геометрическая изомерия

Важное следствие жесткости двойной связи (отсутствия вращения вокруг нее) - существование геометрических изомеров . Самые распространенные из них - это цис-транс-изомеры соединений этиленового ряда, содержащих у ненасыщенных атомов неодинаковые заместители. Простейшим примером могут служить изомеры бутена-2.

Геометрические изомеры имеют одинаковое химическое строение (одинаковый порядок химической связи), различаясь по пространственному расположению атомов, по конфигурации . Это различие и создает разницу в физических (а также химических свойствах). Геометрические изомеры, в отличие от конформеров, могут быть выделены в чистом виде и существуют как индивидуальные, устойчивые вещества. Для их взаимного превращения необходима обычно энергия порядка 125-170 кДж/моль (30-40 ккал/моль). Эту энергию можно сообщить нагреванием или облучением.

В простейших случаях номенклатура геометрических изомеров не представляет затруднений: цис- формами называют геометрические изомеры, у которых одинаковые заместители лежат по одну сторону от плоскости пи-связи, транс- изомеры имеют одинаковые заместители на разных сторонах от плоскости пи-связи. В более сложных случаях применяется Z,E-номенклатура . Ее главный принцип: для обозначения конфигурации указывают цис- (Z, от немецкого Zusammen - вместе) или транс- (Е, от немецкого Entgegen - напротив) расположение старших заместителей при двойной связи.

В Z,E-системе старшими считаются заместители с большим атомным номером. Если атомы, непосредственно связанные с ненасыщенными углеродами, одинаковы, то переходят ко "второму слою", в случае необходимости - к "третьему слою" и т.д.

Рассмотрим применение правил Z,E-номенклатуры на двух примерах.

I II

Начнем с формулы I, где все решается атомами "первого слоя". Расставив их атомные номера, получим, что старшие заместители каждой пары (бром в верхней части формулы и азот в нижней) находятся в транс -положении, отсюда следует стереохимические обозначение Е:

Е-1-бром-1-хлор-2-нитроэтен

Для определения стереохимического обозначения структуры II необходимо искать различие в "высших слоях". По первому слою группы СН 3 , С 2 Н 5 , С 3 Н 7 не отличаются. Во втором слое у группы СН 3 сумма атомных номеров равна трем (три атома водорода), у групп С 2 Н 5 и С 3 Н 7 - по 8. Значит, группа СН 3 не рассматривается - она младше двух других. Таким образом, старшие группы - это С 2 Н 5 и С 3 Н 7 , он находятся в цис -положении; стереохимические обозначение Z.

Z-3-метилгептен-3

Если бы понадобилось определить, какая группа старше - С 2 Н 5 или С 3 Н 7 , пришлось бы перейти к атомам "третьего слоя", сумма атомных номеров в этом слое для обеих групп оказались бы соответственно равными 3 и 8, т.е. С 3 Н 7 старше, чем С 2 Н 5 . В более сложных случаях определения старшинства надо учитывать дополнительные условия, как-то: атом, связанный двойной связью, считается дважды, связанный тройной - трижды; из числа изотопов старше более тяжелый (дейтерий старше водорода) и некоторые другие.

Отметим, что обозначения Z не является синонимами цис- обозначений, как и обозначения Е не всегда соответствуют расположению транс- , например:

цис- 1,2-дихлорпропен-1 цис- 1,2-дихлор-1-бромпропен-1

Z-1,2-дихлорпропен-1 Е-1,2-дихлор-1-бромпропен-1

Контрольные задачи

1. Бомбикол - феромон (половой аттрактант) тутового шелкопряда - представляет собой E-10-Z-12-гексадекадиенол-1. Изобразите его структурную формулу.

2. Назовите по Z,E-номенклатуре следующие соединения:

II.3. Оптическая изомерия (энантиомерия)

Среди органических соединений встречаются вещества, способные вращать плоскость поляризаации света. Это явление называют оптической активностью, а соответствующие вещества - оптически активными . Оптически активные вещества встречаются в виде пар оптических антиподов - изомеров, физические и химические свойства которых в обычных условиях одинаковы, за исключением одного - знака вращения плоскости поляризации. (Если один из оптических антиподов имеет, например, удельное вращение [ПРИМ.1] +20 о, то другой - удельное вращение -20 о).

II.4. Проекционные формулы

Для условного изображения асимметрического атома на плоскости пользуются проекционными формулами Э.Фишера . Их получают, проецируя на плоскость атомы, с которыми связан асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. Ниже приведены различные способы записи проекционной формулы, отвечающей левой модели на предыдущем рисунке:

Приведем несколько примеров проекционных формул:

(+)-аланин (-)-бутанол (+)-глицериновый альдегид

При названиях веществ приведены их знаки вращения: это значит, например, что левовращающий антипод бутанола-2 имеет пространственную конфигурацию , выражаемую именно приведенной выше формулой, а ее зеркальное изображение отвечает правовращающему бутанолу-2. Определение конфигурации оптических антиподов проводится экспериментально [ПРИМ.3] .

В принципе, каждый оптический антипод может быть изображен двенадцатью (!) различными проекционными формулами - в зависимости от того, как расположена модель при проекции, с какой стороны мы смотрим на нее. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную функцию, если она стоит в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того, чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулы можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла:

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы:

3. Одна (или любое нечетное число) перестановок заместителей у асимметрического центра приводит к формуле оптического антипода:

4. Поворот в плоскости чертежа на 90 о превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. не считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом:

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее; четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

6. Проекционные формулы нельзя выводить из плоскости чертежа (т.е. нельзя, например, рассматривать их "на просвет" с обратной стороны бумаги - при этом стереохимический смысл формулы изменится).

II.5. Рацематы

Если в формуле вещества есть асимметрический атом, это отнюдь не означает, что такое вещество будет обладать оптической активностью. Если асимметрический центр возникает в ходе обычной реакции (замещение в группе СН 2 , присоединение по двойной связи и т.п.), то вероятность создания обеих антиподных конфигураций одинакова. Поэтому, несмотря на асимметрию каждой отдельной молекулы, получающееся вещество оказывается оптически неактивным. Такого рода оптически неактивные модификации, состоящие из равного количества обоих антиподов, называются рацематами [ПРИМ.4] .

II.6. Диастереомерия

Соединения с несколькими асимметрическими атомами обладают важными особенностями, отличающими их от рассмотренных ранее более простых оптически активных веществ с одним центром асимметрии.

Допустим, что в молекуле некоего вещества имеются два асимметрических атома; обозначим их условно А и Б. Легко видеть, что возможны молекулы со следующими комбинациями:

Молекулы 1 и 2 представляют собой пару оптических антиподов; то же самое относится и к паре молекул 3 и 4. Если же сравнивать друг с другом молекулы из разных пар антиподов - 1 и 3, 1 и 4, 2 и 3, 2 и 4, то мы увидим, что перечисленные пары не являются оптическими антиподами: конфигурация одного асимметрического атома у них совпадает, конфигурация другого - не совпадает. Все это пары диастереомеров , т.е. пространственных изомеров, не составляющих друг с другом оптических антиподов.

Диастереомеры отличаются друг от друга не только оптическим вращением, но и всеми другими физическими константами: у них разные температуры плавления и кипения, разные растворимости и др. Различия в свойствах диастереомеров зачастую ничуть не меньше, чем различия в свойствах между структурными изомерами.

Примером соединения рассматриваемого типа может случить хлоряблочная кислота

Ее стереоизомерные формы имеют следующие проекционные формулы:

эритро- формы трео- формы

Названия эритро - и трео - происходят от названий углеводов эритрозы и треозы. Эти названия употребляют для указания взаимного положения заместителей у соединений с двумя асимметрическими атомами: эритро -изомерами называют те, у которых два одинаковых боковых заместителя стоят в стандартной проекционной формуле на одной стороне (справа или слева); трео -изомеры имеют одинаковые боковые заместители на разных сторонах проекционной формулы [ПРИМ.5] .

Два эритро- изомера представляют собой пару оптических антиподов, при их смешении образуется рацемат. Парой оптических изомеров являются и трео- формы; они тоже дают при смешении рацемат, отличающийся по свойствам от рацемата эритро- формы. Таким образом, всего существуют четыре оптически активных изомера хлоряблочной кислоты и два рацемата.

При дальнейшем росте числа асимметрических центров число пространственных изомеров возрастает, причем каждый новый асимметрический центр вдвое увеличивает число изомеров. Оно определяется формулой 2 n , где n - число асимметрических центров.

Число стереоизомеров может уменьшаться из-за частичной симметрии, появляющейся в некоторых структурах. Примером может служить винная кислота, у которой число индивидуальных стереоизомеров сокращается до трех. Их проекционные формулы:

Формула I идентична с формулой Iа: превращается в нее при повороте на 180 о в плоскости чертежа и, следовательно, не изображает нового стереоизомера. Это оптически неактивная модификация - мезо-форма . В отличие от рацемата, который может быть расщеплен на оптические антиподы , мезо- форма принципиально нерасщепляема: каждая ее молекула имеет один асимметрический центр одной конфигурациии, второй - противоположной. В итоге происходит внутримолекулярная компенсация вращения обоих асимметрических центров.

Мезо- формы имеются у всех оптически активных веществ с несколькими одинаковыми (т.е. связанными с одинаковыми заместителями) асимметрическими центрами [ПРИМ.6] . Проекционные формулы мезо- форм всегда можно узнать по тому, что их всегда можно разделить горизонтальной линией на две половины, которые по записи на бумаге формально идентичны, в действительности же зеркальны:

Формулы II и III изображают оптические антиподы винной кислоты; при их смешении образуется оптически неактивный рацемат - виноградная кислота.

II.7. Номенклатура оптических изомеров

Самая простая, наиболее старая, однако и ныне еще употребляемая система номенклатуры оптических антиподов основана на сравнении проекционной формулы называемого антипода с проекционной формулой некоего стандартного вещества, выбранного в качестве "ключа". Так, для альфа-оксикислот и альфа -аминокислот ключом является верхняя часть их проекционной формулы (в стандартной записи):

L- оксикислоты (Х = ОН) D- оксикислоты (Х = ОН)

L-аминокислоты (Х = NH 2) D- аминокислоты (Х = NH 2)

Конфигурацию всех альфа -оксикислот, имеющих в стандартно написанной проекционной формуле Фишера гидроксильную группу слева, обозначают знаком L ; если же гидроксил расположен в проекционной формуле справа - знаком D [ПРИМ.7] .

Ключом для обозначения конфигурации сахаров служит глицериновый альдегид:

L-(-)-глицериновый альдегид D- (+)-глицериновый альдегид

В молекулах сахаров обозначение D- или L- относится к конфигурации нижнего асимметрического центра.

Система D- ,L- обозначений имеет существенные недостатки: во-первых, обозначение D- или L- указывает конфигурацию только одного асимметрического атома, во-вторых, для некоторых соединений получаются разные обозначения, в зависимости от того, взят ли в качестве ключа глицериновый альдегид или оксикислотный ключ, например:

Эти недостатки системы ключей ограничивают ее применение в настоящее время тремя классами оптически активных веществ: сахарами, аминокислотами и оксикислотами. На общее же применение рассчитана "R,S-система Кана, Ингольда и Прелога [ПРИМ.8] .

Для определения R- или S-конфигурации оптического антипода необходимо расположить тетраэдр заместителей вокруг асимметрического углеродного атома таким образом, чтобы младший заместитель (обычно это водород) имел направление "от наблюдателя". Тогда если движение при переходе по кругу трех остальных заместителей от старшего к среднему по старшинству и затем к самому младшему происходит против часовой стрелки - это R -изомер (ассоциируется с таким же движением руки при написании буквы R), если по часовой стрелке - это S- изомер (ассоциируется с таким же движением руки при написании буквы S).

Для определения старшинства заместителей у асимметрического атома используются правила подсчета атомных номеров, уже рассматривавшиеся нами в связи с Z,E-номенклатурой геометрических изомеров (см. ).

Для выбора R,S-обозначений по проекционной формуле необходимо путем четного числа перестановок (не изменяющих, как мы знаем, стереохимического смысла формулы) расположить заместители так, чтобы младший из них (обычно водород) оказался внизу проекционной формулы. Тогда старшинство остальных трех заместителей, падающее по часовой стрелке, соответствует обозначению R, против часовой стрелки - обозначению S [ПРИМ.9] :

Контрольные задачи

3. Определите конфигурацию асимметрического центра аскорбиновой кислоты (витамина С) (по R,S -номенклатуре и по сравнению с глицериновым альдегидом):

4. Алкалоид эфедрин имеет формулу:

Дайте название этого соединения, используя R,S -номенклатуру.

5. Цистеин - заменимая аминокислота, участвующая в регуляции процессов обмена веществ, представляет собой L -1-амино-2-меркаптопропионовую кислоту. Изобразите его структурную формулу и дайте название по R,S -номенклатуре.

6. Левомицетин (антибиотик широкого спектра действия) представляет собой D (-)-трео-1-пара-нитрофенил-2-дихлорацетиламино-пропандиол-1,3. Изобразите его структуру в виде проекционной формулы Фишера.

7. Синэстрол - синтетический эстрогенный препарат нестероидного строения. Дайте его название с обозначением стереохимической конфигурации:

II.8. Стереохимия циклических соединений

При замыкании цепи углеродных атомов в плоский цикл валентные углы атомов углерода вынуждены отклоняться от своего нормального тетраэдрического значения, причем величина этого отклонения зависит от числа атомов в цикле. Чем больше угол отклонения валентных связей, тем больше должен быть запас энергии молекулы, тем меньше устойчивость цикла. Однако, плоское строение имеет только трехчленный циклический углеводород (циклопропан); начиная с циклобутана молекулы циклоалканов имеют неплоское строение, что понижает "напряжение" в системе.

Молекула циклогексана может существовать в виде нескольких конформаций, в которых сохраняются "нормальные" валентные углы (для упрощения показаны только атомы углерода):

Энергетически наиболее выгодной является конформация I - так называемая форма "кресла ". Конформация II - "твист " - занимает промежуточное положение: она менее выгодна, чем конформация кресла (из-за наличия в ней заслоненно расположенных атомов водорода), но более выгодна, чем конформация III. Конформация III - "ванна " - наименее выгодна из трех вследствие значительного отталкивания направленных верх атомов водорода.

Рассмотрение двенадцати связей С-Н в конформации кресла позволяет разделить их на две группы: шесть аксиальных связей, направленных поочередно то вверх, то вниз, и шесть экваториальных связей, направленных в стороны. В монозамещенных циклогексанах заместитель может находиться либо в экваториальном, либо в аксиальном положении. Эти две конформации обычно находятся в равновесии и быстро переходят друг в друга через конформацию твист:

Экваториальная конформация (е) обычно беднее энергией и поэтому более выгодна, чем аксиальная (а).

При появлении в циклах заместителей (боковых цепей) кроме проблемы конформации самого цикла перед исследователем встают и проблемы конфигурации заместителей : так, в случае наличия двух одинаковых или различных заместителей появляются цис-транс -изомера. Отметим, что говорить о цис-транс -конфигурации заместителей имеет смысл только в приложении к насыщенным малым и средним циклам (до С 8): в кольцах с большим числом звеньев подвижность становится уже столь значительной, что рассуждения о цис- или транс - положении заместителей теряют смысл.

Так, классическим примером являются стереоизомерные циклопропан-1,2-дикарбоновые кислоты. Существуют две стереоизомерные кислоты: одна из них, имеющая т.пл. 139 о С, способна образовывать циклический ангидрид и является, следовательно, цис -изомером. Другая стереоизомерная кислота с т.пл. 175 о С, циклического ангидрида не образует; этотранс -изомер [ПРИМ.10] :

В таких же отношениях друг с другом находятся две стереоизомерные 1,2,2-триметилциклопентан-1,3-дикарбоновых кислоты. Одна из них, камфорная кислота, т.пл. 187 о С, образует ангидрид и, следовательно, является цис -изомером. Другая - изокамфорная кислота, т.пл. 171 о С, - ангидрида не образует, это транс -изомер:

цис- транс-

Хотя молекула циклопентана на самом деле неплоская, для наглядности удобно изображать ее в плоском виде, как на приведенном выше рисунке, имея в виду, что в цис- изомере два заместителя находятся по одну сторону цикла , а в транс -изомере - по разные стороны цикла .

Дизамещенные производные циклогексана также могут существовать в цис- или транс-форме:

Атом углерода не обладает монополией на создание хиральных центров в молекулах органических соединений. Центром хиральности могут быть также атомы кремния, олова, четырехковалентного азота в четвертичных аммониевых солях и окисях третичных аминов:

В этих соединениях центр асимметрии имеет тетраэдрическую конфигурацию, как и асимметрический атом углерода. Существуют, однако, и соединения с иной пространственной структурой хирального центра.

Пирамидальную конфигурацию имеют хиральные центры, образованные атомами трехвалентного азота, фосфора, мышьяка, сурьмы, серы. В принципе, центр асимметрии можно считать тетраэдрическим, если в качестве четвертого заместителя принять неподеленную электронную пару гетероатома:

Оптическая активность может возникать и без хирального центра, за счет хиральности структуры всей молекулы в целом (молекулярная хиральность или молекулярная асимметрия ). Наиболее характерными примерами являются наличие хиральной оси либо хиральной плоскости .

Хиральная ось возникает, например, в алленах, содержащих различные заместители при sp 2 -гибридных углеродных атомах. Легко видеть, что приведенные ниже соединения являются зеркальными изображениями, а, значит, оптическими антиподами:

Ось хиральности показана на рисунках стрелкой.

Другой класс соединений, имеющих хиральную ось - оптически активные бифенилы, имеющие в орто -положениях объемистые заместители, затрудняющие свободное вращение вокруг С-С связи, соединяющей ареновые кольца:

Хиральная плоскость характеризуется тем, что у нее можно различить "верх" и "низ", а также "правую" и "левую" стороны. Примером соединений с хиральной плоскостью могут служить оптически активный транс- циклооктен и оптически активное производное ферроцена.