Нарисуйте резонансные структуры для частиц. Теория резонанса

Химический резонанс

Теория резонанса - теория электронного строения химических соединений, в соответствие с которой распределение электронов в молекулах (в т.ч. сложных ионах или радикалах), является комбинацией (резонансом) канонических структур с различной конфигурацией двухэлектронных ковалентных связей . Резонансная волновая функция , описывающая электронную структуру молекулы, является линейной комбинацией волновых функций канонических структур .

Иными словами, молекулярная структура описывается не одной возможной структурной формулой, а сочетанием (резонансом) всех альтернативных структур.

Следствием резонанса канонических структур является стабилизация основного состояния молекулы, мерой такой резонансной стабилизации является энергия резонанса - разность между наблюдаемой энергией основного состояния молекулы и расчетной энергии основного состояния канонической структуры с минимальной энергией .

Резонансные структуры циклопентадиенид-иона

История

Идея резонанса был введена в квантовую механику Вернером Гейзенбергом в 1926 году при обсуждении квантовых состояний атома гелия . Он сравнил структуру атома гелия с классической системой резонирующего гармонического осциллятора .

Модель Гейзенберга была применена Лайнусом Полингом (1928 год) к описанию электронной структуры молекулярных структур. В рамках метода валентных схем Полинг успешно объяснил геометрию и физико-химические свойства целого ряда молекул через механизм делокализации электронной плотности π-связей.

Сходные идеи для описания электронной структуры ароматических соединений были предложены Кристофером Ингольдом. В 1926-1934 годах Ингольд заложил основы физической органической химии, развив альтернативную теорию электронных смещений (теорию мезомерии), призванную объяснить структуру молекул сложных органических соединений, не укладывающуюся в обычные валентные представления. Предложенный Ингольдом для обозначения явления делокализации электронной плотности термин «мезомеризм » (1938), используется преиущественно в немецкой и французской литературе, а английской и русской преобладает «резонанс ». Представления Ингольда о мезомерном эффекте стали важной составной частью теории резонанса. Благодаря немецкому химику Фрицу Арндту были введены, ставшие общепринятыми обозначения мезомерных структур при помощи двунаправленных стрелок.

В послевоенном СССР теория резонанса стала объектом гонения в рамках идеологических кампаний и была объявлена «идеалистической», чуждой диалектическому материализму - и поэтому неприемлемой для использования в науке и образовани:

«Теория резонанса», будучи идеалистической и агностической, противостоит материалистической теории Бутлерова, как несовместимая и непримиримая с ней;… сторонники «теории резонанса» игнорировали ее и извращали ее существо.

«Теория резонанса», будучи насквозь механистической. отрицает качественные, специфические особенности органического вещества и совершенно ложно пытается сводить закономерности органической химии к закономерностям квантовой механики…

…Мезомерийно-резонансная теория в органической химии представляет собою такое же проявление общей реакционной идеологии, как и вейсманизм-морганизм в биологии, как и современный «физический» идеализм, с которыми она тесно связана.

Кедров Б.М. Против "физического" идеализма в химической науке. Цит. по

Гонения на теорию резонанса получили негативную оценку в мировой научной среде. В одном из журналов Американского химического общества в обзоре, посвящённом положению в советской химической науке, в частности, отмечалось :

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Химический резонанс" в других словарях:

    В ЯМР смещение сигнала ЯМР в зависимости от химического состава вещества, обусловленное экранированием внешнего магнитного поля электронами атомов. При появлении внешнего магнитного поля возникает диамагнитный момент атомов, обусловленный… … Википедия

    Изображение мозга человека на медицинском ЯМР томографе Ядерный магнитный резонанс (ЯМР) резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν… … Википедия

    - (ЯМР) резонансное поглощение электромагнитной энергии веществом, обусловленное переориентацией магнитных моментов атомных ядер. ЯМР один из методов радиоспектроскопии (См. Радиоспектроскопия). Наблюдается в сильном постоянном магнитном… …

    Содержание … Википедия

    Наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии (См. Электронные теории в органической химии)). Н. х. важнейшая… … Большая советская энциклопедия

    Большая советская энциклопедия

    I Химия I. Предмет и структура химии Химия одна из отраслей естествознания, предметом изучения которой являются химические элементы (Атомы), образуемые ими простые и сложные вещества (молекулы (См. Молекула)), их превращения и… … Большая советская энциклопедия

    Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

    Минералы твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, довольно однородные кристаллические вещества с упорядоченной внутренней… … Энциклопедия Кольера

    Наука о методах определения химического состава веществ. Химический анализ буквально пронизывает всю нашу жизнь. Его методами проводят скрупулезную проверку лекарственных препаратов. В сельском хозяйстве с его помощью определяют кислотность почв… … Энциклопедия Кольера электронная книга


В сороковые годы наметился научный прорыв в области органической химии и химии высокомолекулярных соединений. Создаются качественно новые материалы. Идет процесс становления физики и химии полимеров, создается теория макромолекул. Научные достижения в этой области становятся одной из основ качественных преобразований в народном хозяйстве. И не случайно именно здесь идеологи наносят мощный упреждающий удар.

Предлогом послужила теория резонанса, выдвинутая в 1928 г. крупным ученым-химиком, лауреатом нобелевской премии Лайнусом Полингом. Согласно этой теории для молекул, строение которых может быть представлено в виде нескольких структурных формул, отличающихся способом распределения электронных пар между ядрами, реальное строение не соответствует ни одной из структур, а является промежуточной между ними. Вклад каждой структуры определяется ее природой и относительной устойчивостью. Теория резонанса (и близкая к ней теория мезомерии Ингольда) имела существенное значение как удобная систематизация структурных представлений. Эта теория сыграла важную роль в развитии химии, особенно органической. Фактически она выработала язык, на котором химики говорили несколько десятков лет.

Представление о степени наката и аргументации идеологов дают отрывки из статьи "Теория резонанса" в /35/:

"Исходя из субъективно-идеалистичсских соображений, приверженцы теории резонанса придумали для молекул многих химических соединений наборы формул-"состояний" или "структур", не отражающих объективной реальности. В соответствии с теорией резонанса подлинное состояние молекулы представляет собой якобы результат квантово-механического взаимодействия, "резонанса", "суперпозиции" или "наложения" этих фиктивных "состояний" или "структур".

Теория резонанса, теснейшим образом связанная с идеалистическими принципами "дополнительности" Н. Бора и "суперпозиции" П. Дирака, представляет собой распространение "физического" идеализма на органическую химию и имеет одну и ту же с ним методологическую махистскую основу.

Другим методологическим пороком теории резонанса является её механицизм. В соответствии с этой теорией у органической молекулы отрицается наличие специфических качественных особенностей. Её свойства сводятся к простой сумме свойств составляющих её частей; качественные различия сводятся к чисто количественным различиям. Точнее, сложные химические процессы и взаимодействия, происходящие в органическом веществе, здесь сводятся к одним, более простым, чем химические формы, физическим формам движения материи - к электродинамическим и квантово-механическим явлениям. Развивая мысль о сведении химии к физике, известный физик-квантовик и "физический" идеалист Э. Шрёдингер в своей книге "Что такое жизнь с точки зрения физики?" даёт широкую систему такого механистического сведения высших форм движения материн к низшим. Биологические процессы, являющиеся основой жизни, он в соответствии с вейсманизмом-морганизмом сводит к генам, гены - к органическим молекулам, из которых они образованы, а органические молекулы - к квантово-механическим явлениям".

Интересны два момента. Во первых, кроме стандартных обвинений в идеализме здесь важнейшую роль играет тезис о специфичности и качественных особенностях форм движения, фактически налагающие запрет на использование физических методов в химии, физических и химических в биологии и т. п. Во-вторых, сделана попытка связать теорию резонанса с вейсманизмом-морганизмом, т. е. как бы заложить основу объединенного фронта борьбы с передовыми научными направлениями.

В печально известном "зеленом томе" имеется статья Б. М. Кедрова /37/, посвященная "теории резонанса". В ней живописуются те последствия, которые несет с собой эта "ужасная" теория. Приведем весьма показательные выводы этой статьи.

1. "Теория резонанса" является субъективно-идеалистической, ибо она превращает фиктивный образ в объект; подменяет объект математическим представлением, существующим лишь в голове ее сторонников; ставит объект - органическую молекулу - в зависимость от этого представления; приписывает этому представлению самостоятельное существование вне нашей головы; наделяет его способностыо двигаться, взаимодействовать, налагаться (суперпозировать) и резонировать.

2. "Теория резонанса" является агностической, ибо она в принципе отрицает возможность отражения единого объекта (органической молекулы) и его строения в виде единого структурного образа, единой структурной формулы; она отбрасывает такой единый образ единого объекта и заменяет его набором фиктивных "резонансных структур".

3. "Теория резонанса", будучи идеалистической и агностической, противостоит материалистической теории Бутлерова, как несовместимая и непримиримая с ней; поскольку теория Бутлерова в корне противоречит всякому идеализму и агностицизму в химии, сторонники "теории резонанса" игнорировали ее и извращали ее существо.

4. "Теория резонанса", будучи насквозь механистической. отрицает качественные, специфические особенности органического вещества и совершенно ложно пытается сводить закономерности органической химии к закономерностям квантовой механики; с этим также связано отрицание теории Бутлерова сторонниками "теории резонанса". поскольку теория Бутлерова, будучи по своему существу диалектической, глубоко раскрывает специфические закономерности органической химии, отрицаемые современными механистами.

5. По своей сущности с "теорией резонанса" Паулинга совпадает теория мезомерии Ингольда, которая слилась с первой в единую мезомерийно-резонансную теорию. Подобно тому, как буржуазные идеологи собрали воедино все реакционные течения в биологии, дабы они не выступали порознь, и слили их в единый фронт вейсманизма-морганизма, так они собрали воедино реакционные течения и в органической химии, образовав единый фронт сторонников Паулинга- Ингольда. Всякая попытка отделить теорию мезомерии от "теории резонанса" на том основании, что будто теория мезомерии может быть истолкована материалистически, является грубой ошибкой, помогающей на деле нашим идейным противникам.

6. Мезомерийно-резонансная теория в органической химии представляет собою такое же проявление общей реакционной идеологии, как и вейсманизм-морганизм в биологии, как и современный "физический" идеализм, с которыми она тесно связана.

7. Задача советских ученых состоит в том, чтобы решительно бороться против идеализма и механицизма в органической химии, против низкопоклонства перед модными буржуазными, реакционными течениями, против враждебных советской науке и нашему мировоззрению теорий, таких, как мезомерийно-резонансная теория..."

Определенную пикантность ситуации вокруг "теории резонанса" создавала явная надуманность обвинений с научной точки зрения. Это был просто приближенный модельный подход, не имевший никакого отношения к философии. Но была развязана шумная дискуссия. Вот что пишет о ней Л. А. Блюменфельд /38/:

"В ходе этой дискуссии выступили некоторые физики, утверждавшие, что теория резонанса не только идеалистична (это был основной мотив дискуссии), но и безграмотна, так как противоречит основам квантовой механики. В связи с этим мои учителя, Я. К. Сыркин и М. Е. Дяткина, против которых была главным образом направлена эта дискуссия, захватив меня с собой, пришли к Игорю Евгеньевичу Тамму, чтобы узнать его мнение по этому поводу. Пожалуй, самым важным здесь было то, что никаких колебаний-к кому именно из крупных физиков обратиться-у нас не было. Абсолютная научная добросовестность, полное отсутствие "физического снобизма", неподверженность влиянию каких бы то ни было конъюнктурных соображений и природная благожелательность-все это автоматически делало Тамма едва ли "не единственным возможным арбитром. Он сказал, что предлагаемый в теории резонанса способ описания ничему в квантовой механике не противоречит, никакого идеализма здесь нет и, по его мнению, вообще нет предмета для дискуссии. Впоследствии всем стала ясна его правота. Однако дискуссия, как известно, продолжалась. Нашлись люди, утверждавшие, будто теория резонанса - лженаука. Это отрицательно сказалось на развитии структурной химии..."

Действительно, никакого предмета для дискуссии нет, но есть задача нанести удар по специалистам высокомолекулярной химии. И ради этого Б. М. Кедров при рассмотрении теории резонанса сделал крупный шаг в истолковании В. И. Ленина /37/:

"Товарищи, уцепившиеся за слово "абстракция", поступили как догматики. Они сопоставили тот факт, что мнимые "структуры" теории мезомерии суть абстракции и даже плод абстракции, с тем, что сказано у Ленина о научной абстракции, и сделали вывод, что раз абстракции в науке необходимы, то значит допустимы всякие абстракции, в том числе и абстрактные понятия о фиктивных структурах теории мезомерии. Так буквоведски был решен ими этот вопрос, вопреки существу дела, вопреки прямым указаниям Ленина на вредность пустых и вздорных абстракций, на опасность превращения абстрактных понятий в идеализм. Именно потому, что тенденции превращения абстрактных понятий в идеализм с самого начала имелись и в теории мезомерии и в теории резонанса, обе эти теории слились в конце концов вместе".

Любопытно, что и идеализм бывает разный. Так в статье "Бутлеров" /32/ говорится; что советские химики опираются на теорию Бутлерова в своей борьбе против идеалистической теории резонанса. Но с другой стороны оказывается, что "в общих философских вопросах, не связанных с химией, Бутлеров был идеалистом, пропагандистом спиритизма". Впрочем никакие противоречия для идеологов роли не играют. В борьбе с передовой наукой все средства были хороши.

РЕЗОНАНСА ТЕОРИЯ , теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой, а сочетанием (резонансом) всех альтернативных структур. Идея такого способа описания электронного строения принадлежит Л. Полингу (1928). Р. т. является развитием классич. теории хим. строения для молекул, ионов, радикалов, строение к-рых можно представить в виде неск. разл. структурных ф-л, отличающихся способом распределения электронных пар между атомными ядрами. Согласно Р. т., строение таких соед. является промежуточным между отдельными возможными классич. структурами, причем вклад каждой отдельной структуры можно учесть при помощи разл. модификаций квантовомех. метода валентных связей (см. Валентных связей метод).

Для соед. с сопряженными связями из всех возможных структур с разложением типами спаривания электронов кратных связей достаточно рассмотреть лишь структуры с неперекрещивающимися связями (канонич. структуры). Электронное строение бензола описывается резонансом пяти канонич. структур:

Волновая ф-ция молекулы бензола по Полингу представляет линейную комбинацию:

Y = 0,624(Y I + Y II) + 0,271(Y III + Y IV + Y V).

Откуда следует, что осн. вклад (примерно 80%) в волновую ф-цию вносят кекулевские структуры I и II. Их эквивалентность и эквивалентность структур III-V объясняют вырав-ненность всех углерод-углеродных связей в молекуле бензола и их промежуточный (примерно полуторный) характер между простой и двойной связями углерод-углерод. Это предсказание находится в полном соответствии с экспериментально найденными длиной связи С-С в бензоле (0,1397 нм) и св-вами симметрии его молекулы (группа симметрии D 6h).

Р. т. с успехом применяют для описания строения и св-в ионов и радикалов. Так, строение карбонат-иона представляют как резонанс (обозначается двусторонней стрелкой) трех структур, каждая из к-рых вносит одинаковый вклад в волновую ф-цию:

Поэтому ион обладает тригональной симметрией (группа симметрии V 3h ), и каждая связь С-О имеет на 1 / 3 характер двойной связи.

Строение аллильного радикала не соответствует ни одной из классич. структур VI и VII и должно описываться их резонансом:


Спектр ЭПР аллильного радикала свидетельствует о том, что неспаренный электрон не локализован ни на одной из концевых метиленовых групп, а распределен между ними так, что радикал имеет группу симметрии С 2h , причем энергетич. барьер вращения концевых метиленовых групп (63 кДж/моль) имеет промежуточный значение между величинами, характерными для барьеров вращения вокруг простой и двойной связи С-С.

В соед., включающих связи между атомами с существенно разл. электроотрицательностями, значит. вклад в волновую ф-цию вносят резонансные структуры ионного типа. Строение СО 2 в рамках Р. т. описывается резонансом трех структур:

Длина связи между атомами С и О в этой молекуле меньше, чем длина двойной связи С=О.

Поляризация связей в молекуле формамида, приводящая к потере мн. св-в, характерных для карбонильной группы, объясняется резонансом:

Резонанс структур ведет к стабилизации осн. состояния молекулы, иона или радикала. Мерой этой стабилизации служит энергия резонанса, к-рая тем больше, чем больше число возможных резонансных структур и чем больше число резонирующих низкоэнергетич. эквивалентных структур. Энергию резонанса можно рассчитать при помощи метода валентных связей или метода мол. орбиталей (см. Молекулярных орбиталей методы )как разность энергий осн. состояния молекулы и ее изолир. связей или осн. состояния молекулы и структуры, моделирующей одну из устойчивых резонансных форм.

По своей осн. идее Р. т. очень близка к теории мезомерии (см. Мезомерия ), однако носит более количеств. характер, ее символика вытекает непосредственно из классич. структурной теории, а квантовомех. метод валентных связей служит прямым продолжением Р. т. В силу этого Р. т. продолжает сохранять определенное значение как удобная и наглядная система структурных представлений.

Лит.: Паулинг Л., Природа химической связи, пер. с англ., М.-Л., 1947; Уэланд Дж., Теория резонанса и ее применение в органической химии, пер. с англ., М., 1948; Полинг Л., "Ж. Весе. Хим. об-ва им. Д. И. Менделеева", 1962 т. 7, № 4, с. 462-67. В. И. Минкин.

Полезные интернет ресурсы:

Удобным способом изображения делокализации в сопряженных системах является изображение с помощью резонансных структур .

При написании резонансных структур следует соблюдать следующие правила:

1. Атомы и молекулы не меняют своего положения; изменяется положение НЭП и π-электронов кратных связей.

2. Каждая резонансная структура, приписываемая данному соединению, должна иметь одну и ту же сумму π-электронов, включая π-связи и НЭП.

3. Между резонансными структурами ставят резонансную стрелку «↔».

4. В резонансных структурах не принято обозначение электронных эффектов при помощи прямых и изогнутых стрелок.

5. Набор резонансных структур молекулы, иона или радикала следует заключать в квадратные скобки.

Например:

При оценке резонансной стабилизации молекул и частиц, а также при сравнении относительных энергий различных резонансных структур необходимо руководствоваться следующими правилами:

1. Энергия реальной молекулы меньше. Чем энергия любой из резонансных структур.

2. чем больше резонансных структур можно написать для данной молекулы или частицы, тем она стабильнее.

3. При прочих равных условиях более стабильными являются резонансные структуры с отрицательным зарядом на наиболее электроотрицательном атоме и с положительным зарядом на наиболее электроположительном атоме.

4. Резонансные структуры, в которых все атомы имеют октет электронов, более стабильны.

5. максимальную стабильность имеют частицы, для которых резонансные структуры являются эквивалентными, а соответственно имеют одинаковую энергию.

5.2. ТЕОРИЯ КИСЛОТ И ОСНОВАНИЙ В ОРГАНИЧЕСКОЙ ХИМИИ

В органической химии действуют две основные теории кислот и оснований. Это теории Бренстеда и Льюиса.

Определение: Согласно теории Бренстеда кислотой является любое вещество, способное диссоциировать с отщеплением протона. Т.е. кислота – это донор протонов. Основанием является любое вещество, способное присоединять протон. Т.е. основание – это акцептор протонов.

Согласно теории Льюиса кислотой является любая молекула или частица, способная принимать электроны на вакантную орбиталь. Т.е. кислота – это акцептор электронов. Основанием является любая молекула или частица, способная быть донором электронов. Т.е. основание – это донор электронов.

Определение: Частица, образующаяся из кислоты после диссоциации и несущая отрицательный заряд - называется сопряженным основанием. Частица, образующаяся из основания после присоединения протона и несущая положительный заряд - называется сопряженной кислотой.

5.2.1. Кислоты Бренстеда

Характеристикой силы кислот, по отношению к воде, является константа диссоциации, являющаяся константой равновесия следующей реакции:

Наиболее известные примеры кислот в органической химии это карбоновые кислоты алифатические, например уксусная кислота:

и бензойная:

Карбоновые кислоты являются кислотами средней силы. В этом можно убедиться сравнивая значения рК карбоновых кислот и некоторых других приведенных ниже:

Отщеплять протон могут органические соединения, относящиеся к разным классам органических соединений. Среди органических соединений различают ОН-, SH-, NH- и СН-кислоты. К ОН-кислотам относятся карбоновые кислоты, спирты и фенолы. К NH-кислотам относятся амины и амиды. К СН-кислотам относятся нитроалканы, карбонильные соединения, сложные эфиры, терминальные алкины. В очень слабым СН-кислотам относятся алкены, ароматические углеводороды и алканы.

Сила кислоты тесно связана с устойчивостью сопряженного основания. Чем устойчивее сопряженное основание, тем более кислотно-основное равновесие смещено в строну сопряженных основания и кислоты. Стабилизация сопряженной кислоты может быть обусловлена следующими факторами:

Чем выше электроотрицательность атома, тем сильнее он удерживает он электроны в сопряженном основании. Например, рК фтористого водорода 3.17; рК воды 15.7; рК аммиака 33 и рК метана 48.

2. Стабилизация аниона по мезомерному механизму. Например, в карбоксилат-анионе:

В алкоксид-ионе, например:

такая стабилизация невозможна. Соответственно для уксусной кислоты рК=4.76, рК метилового спирта 15.5.

Другим примером стабилизации сопряженного основания является фенолят-ион, образующийся в результате диссоциации фенола:

Для образовавшегося феноксид (или фенолят)-иона можно построить резонансные структуры, отражающие делокализацию отрицательного заряда по ароматическому кольцу:

Соответственно рК фенола равно 9.98, а метанола, для которого невозможно построить резонансные структуры имеет рК равное 15.5.

3. Введение электронодонорных заместителей дестабилизирует сопряженное основание и соответственно снижает силу кислоты:

4. Введение электроноакцепторных заместителей стабилизирует сопряженное основание и повышает силу кислот:

5. Удаление по цепи электроноакцепторного заместителя от протонодонорной группы ведет к снижению силы кислоты:

Приведенные данные иллюстрируют быстрое затухание индуктивного эффекта с увеличением углеводородной цепи.

Особое внимание следует уделить СН-кислотам , поскольку, образующиеся при их диссоциации сопряженные основания, в качестве которых выступают карбанионы. Эти нуклеофильные частицы являются промежуточными во многих органических реакциях.

СН-кислоты наиболее слабые из кислот всех типов. Продуктом кислотной диссоциации является карбанион – частица, в которой основой является атом углерода, несущий отрицательный заряд. Такая частица имеет тетраэдрическое строение. НЭП занимает sp 3 -гибридную орбиталь. Сила СН-кислоты определяется теми же факторами, чито и сила ОН-кислоты. Ряд стабилизирующего влияния заместителей совпадает с рядом увеличения их электроноакцепторных свойств:

Среди СН-кислот особый интерес представляют аллил-анион и бензил-анион. Эти анионы можно представить в форме резонансных структур:

Эффект делокализации отрицательного заряда в бензил-анионе столь велик, что его геометрия приближается к плоской. При этом углеродный атом карбанионного центра меняет гибридизацию с sp 3 на sp 2 .

В следующем разделе будут рассматриваться современные представления о реакциях электрофильного замещения в ароматическом ряду. При этом не обойтись без теории резонанса, ставшей частью структурной теории и позволяющей в наглядной форме представить себе распределение электронной плотности в нереагирующей молекуле или в промежуточных частицах органических реакций – ионах и радикалах. Основы теории резонанса были развиты Полингом в 40-ые годы прошлого столетия.

Оперируя лишь ограниченным набором графических средств, химики творят чудеса – передают на бумаге при помощи структурных формул строение миллионов органических соединений. Однако иногда это не удается. Может быть, одним из первых примеров такого рода был бензол, свойства которого не удалось передать одной формулой. Поэтому Кекуле вынужден был для него предложить две формулы с нелокализованными двойными связями. Чтобы ясно представить себе истоки теории резонанса, рассмотрим еще несколько примеров.

Для нитрит-иона NO 2 - может быть предложена следующая структурная формула

Из этой формулы следует, что в нитрит-ионе имеется два разных кислорода, один из которых несет отрицательный заряд, а другой – не заряжен. Однако известно, что в нитрит-ионе нет двух разных кислородов. Чтобы преодолеть это затруднение строение иона пришлось изобразить двумя формулами

Аналогичная ситуация складывается в случае аллильного катиона, с которым мы уже встречались раньше. Для этой частицы тоже приходится использовать две формулы, которые только вместе передают все особенности строения катиона

Согласившись с необходимостью передачи строения некоторых молекул или частиц несколькими формулами, мы ставим себя перед поиском ответов на множество возникающих вопросов. Например, сколько формул передают все особенности строения частицы? Соответствуют ли подобранным формулам реальные частицы? Каково реальное распределение электронов в частице?

На эти и другие вопросы и отвечает теория резонанса на качественном уровне. Основные положения этой теории сводятся к следующему.

1. Если все тонкости строения частицы невозможно отобразить одной формулой, то это надо делать, прибегнув к нескольким структурам. Эти структуры называются резонансными, предельными, граничными, каноническими.

2. Если для частицы можно нарисовать две или больше приемлемых структур, то действительное распределение электронов не соответствует ни одной из них, а является промежуточным между ними. Реально существующая частица считается гибридом в действительности не существующих резонансных структур. Каждый из предельных структур вносит свой вклад в реальное распределение электронной плотности в частице. Этот вклад тем больше, чем ближе канонические структуры по энергии.

3. Резонансные формулы записываются с соблюдением определенных правил:

В различных резонансных структурах положения всех атомов должны быть одинаковыми, их отличие состоит только в расположении электронов;

Граничные формулы не должны сильно отличаться по положению электронов, в противном случае вклад таких структур в резонансный гибрид будет минимальным;

Граничные структуры с существенными вкладами в резонансный гибрид должны располагать одинаковым и наименьшим числом неспаренных электронов.

4. Энергия реальной частицы меньше, чем энергия любой из предельных структур. Другими словами – резонансный гибрид стабильнее, чем любой из участвующих в резонансе структур. Такое повышение стабильности называют энергией резонанса.

Плодами качественной и наглядной теории резонанса мы воспользуемся совсем скоро - при объяснении ориентации в реакциях замещения в ароматическом ряду. Пока же отметим, что эта теория верой и правдой служит химии более 70 лет, хотя с момента публикации подвергается критике. Часто критика связана с путаными взаимоотношениями между реальной частицей и каноническими структурами. Сама теория резонанса постулирует, что канонические структуры вымышленные. Тем не менее, довольно часто им придают реальный смысл, что, конечно, не соответствует действительности. Однако при этом появляется возможность остроумно обсудить ситуацию. Так, для объяснения взаимоотношений между предельными структурами и их резонансным гибридом Т. Уэланд предложил воспользоваться биологической аналогией, которая сводится к следующему. «Когда мы говорим, что мул является гибридом осла и лошади, то при этом совсем не имеется в виду, что некоторые мулы являются ослами, а другие – лошадьми, или что каждый мул часть времени является лошадью, а другую – ослом. Мы просто имеем в виду тот факт, что мул – животное, родственное как лошади, так и ослу, и при описании его удобно сопоставить с этими знакомыми нам животными». Надо отметить, что аналогия Уэланда не вполне корректна. Ведь в отличии от предельных структур, которые в действительности не существуют, осел и лошадь – существа весьма конкретные. Кроме того, некоторые специалисты обратили внимание на субъективность отдельных постулатов теории резонанса. Продолжая обсуждение этой теории в рамках биологической аналогии Уэланда, О. А. Реутов еще в 1956 году отметил, что «концепция резонанса не может предсказать, что мул является гибридом именно лошади и осла. Это нужно знать независимым путем. В противном случае можно, например, в качестве одного из родителей взять слона и подобрать второго родителя таким образом, чтобы математически все сошлось».