Что такое химический процесс? Процесс химический: суть и роль в природе. Химические процессы в технологии Условия осуществления процессов в химии

О значительнейших вещах не будем судить слишком быстро.

Гераклит

Химический процесс (лат. «processus» - продвижение) представляет собой последовательную смену состояний вещества, тесную связь следующих друг за другом стадий развития, представляющую непрерывное единое движение. Учение о химических процессах - это область науки в которой существует наиболее глубокое взаимопроникновение физики химии и биологии. Химические процессы подразделяются на гомо- и гетерогенные (в зависимости от агрегатного состояния реагирующих систем) экзо- и эндотермические (в зависимости от количества выделяющейс и поглощающейся теплоты), окислительные, восстановительные (в зависимости от отношения к кислороду) и др.

Все процессы можно объединить в три большие группы:

  • 1. Самопроизвольные процессы, которые можно использовать для получения энергии или совершения работы. Условиями протекания самопроизвольных процессов являются: а) в изолированной системе, т.е. в системе для которой исключен любой материальный или энергетический обме с окружающей средой, сумма всех видов энергии есть величина постоянная; б) изменение энтальпии (тепловой эффект процесса, ДП) зависит только от вида и состояния исходных веществ и продуктов и не зависи от пути перехода. Такая зависимость носит название закона Гесса, сформулированного Гессом в 1840 г.
  • 2. Процессы, для осуществления которых требуется затрата энергии ил совершение работы.
  • 3. Самоорганизация химической системы, т.е. самопроизвольный процесс, проходящий без изменения энергетического запаса системы, совершается только в направлении, при котором порядок в системе уменьшается т.е. где беспорядок возрастает (Д5 > 0).

Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций. Процесс превращения одних вещест в другие называется химической реакцией. К условиям протекания химических процессов относятся прежде всего термодинамические факторы характеризующие зависимость реакций от температуры, давления п некоторых других условий. На скорость химической реакции также влияю следующие условия и параметры:

  • 1) природа реагирующих веществ (например, щелочные металлы растворяются в воде с образованием щелочей и выделением водорода и реакция протекает при обычных условиях моментально; цинк, железо и други реагируют медленно и с образованием оксидов, а благородные металл не реагируют вообще);
  • 2) температура (при повышении температуры на каждые 10 °С скорост реакции увеличивается в 2-4 раза - правило Вант-Гоффа). Со многим веществами кислород начинает реагировать с заметной скоростью уже пр обыкновенной температуре (медленное окисление). При повышении температуры начинается бурная реакция (горение);
  • 3) концентрация (для веществ в растворенном состоянии и газов скорость химических реакций зависит от концентрации реагирующих веществ Горение веществ в чистом кислороде происходит интенсивнее, чем в воздухе, где концентрация кислорода почти в 5 раз меньше). Здесь справедли закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорционально произведению концентрации реагирующих веществ;
  • 4) площадь поверхности реагирования (для веществ в твердом состоянии - скорость прямо пропорциональна поверхности реагирующи веществ. Железо и сера в твердом состоянии реагируют достаточно быстр лишь при предварительном измельчении и перемешивании: горение хвороста и полена);
  • 5) катализатор (скорость реакции зависит от катализаторов, веществ которые ускоряют химические реакции, по сами при этом не расходуются Разложение бертолетовой соли и пероксида водорода ускоряется в присутствии оксида марганца (IV) и др.).

Для вступления в химическую реакцию необходимо преодолеть некоторый энергетический барьер, соответствующий энергии активации, возможность накопления которой сильно зависит от температуры. Многие реакции долгое время не могут закончиться. В таком случае говорят, чт реакция достигла химического равновесия. Химическая система находитс в состоянии равновесия, если выполняются следующие три условия:

  • 1) в системе не происходит энергетических изменений (АН = 0);
  • 2) не происходит изменений степени беспорядка (AS = 0);
  • 3) не изменяется изобарный потенциал (А/ = 0).

Вант-Гофф, используя термодинамический подход, классифицировал химические реакции, а также сформулировал основные положения химической кинетики. Химическая кинетика изучает скорости протекания химических реакций. Ле Шателье сформулировал закон смещени химического равновесия в химических реакциях под влиянием внешни факторов - температуры, давления и др. Согласно принципу Ле Шателье: если на систему, находящуюся в состоянии химического равновесия оказывается внешнее воздействие (изменяется температура, давление ил концентрация), то положение равновесия химической реакции смещаетс в ту сторону, которая ослабляет данное воздействие.

Химические реакции классифицируют по изменению качества исходных веществ и продуктов реакции на следующие виды:

  • - реакции соединения - реакции, при которых из нескольких вещест образуется одно вещество, более сложное, чем исходные;
  • - разложения - реакции, при которых из одного сложного веществ образуется несколько веществ;
  • - замещения - реакции, при которых атомы одного элемента замещаю атом другого элемента в сложном веществе и при этом образуются дв новых - простое и сложное;
  • - обмена - реакции, при которых реагирующие вещества обмениваются своими составными частями, в результате чего из двух сложны веществ образуются два новых сложных вещества.

По тепловому эффекту химические реакции можно подразделить на экзотермические - с выделением теплоты и эндотермические - с поглощением теплоты. С учетом явления катализа реакции могут быть каталитические - с применением катализаторов и иекаталитические - бе применения катализаторов. По признаку обратимости реакции деля на обратимые и необратимые.

Оствальд, исследуя условия химического равновесия, пришел к открытию явления катализа. Оказалось, что в большой степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий. Явление катализа - селективного ускорения химических процессов в присутстви веществ (катализаторов), которые принимают участие в промежуточны процессах, но регенерируются в конце реакции, широко используетс в промышленности. Например, промышленное получение аммиака, контактный способ производства серной кислоты и многие другие. Впервы синтез аммиака был осуществлен в 1918 г. на основе работ Габера, Бош и Митташа с помощью катализатора, представляющего собой металлическое железо с добавками окисей калия и алюминия, при температуре 450-550 °С и давлении 300-1000 атм. В настоящее время большое внимание уделяют применению металлорганических и металлокомплексны катализаторов, отличающихся высокой селективностью и избирательностью действия. Тот же самый процесс синтеза аммиака при использовании метал л органического катализатора удалось осуществить при обычно температуре (18 °С) и нормальном атмосферном давлении, что открывае большие перспективы в производстве минеральных азотных удобрений Особенно велика роль катализа в органическом синтезе. Крупнейши успехом в этом направлении надо признать получение искусственног и синтетического каучука из этилового спирта, осуществленное советски академиком С. В. Лебедевым в 20-х гг. XX в.

Ферменты, или биокатализаторы, играют исключительную роль в биологических процессах и в технологии веществ растительного и животного происхождения, а также в медицине. Сегодня известно свыше 750 ферментов, и их число ежегодно увеличивается. Ферменты являются бифункциональными и полифункциональными катализаторами, так как здесь имее место согласованное воздействие двух или нескольких групп катализаторо различной природы в составе активного центра фермента на поляризаци определенных связей субстрата. Эта же концепция лежит в основе каталитического действия фермента и теории кинетики действия ферментов Главное отличие ферментов от других катализаторов заключается в исключительно высокой активности и резко выраженной специфичности.

Самоорганизация химических систем в биологические, их единство и взаимосвязь подтверждает синтез органических соединений из неорганических. В 1824 г. немецкий химик Ф. Велер, ученик Берцелиуса, впервые получи из неорганического дициана МССЫ при нагревании его с водой щавелеву кислоту НООС-СООН - органическое соединение. Таким же образо из цианистого аммония было получено новое органическое вещество -мочевина (карбамид). В 1854 г. во Франции М. Бертло синтетическим путе получил жир. Наибольшим успехом химии в 50-60 гг. XX в. явился первы синтез простых белков - гормона инсулина и фермента рибонуклеазы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывается изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но и наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила создание производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений -- на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы. химический реакция электрон

Так, еще в 1935 г. такие материалы, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. Но уже в 1960-е гг. 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов изготовлялись на основе газового и нефтяного сырья. Помимо этого, химия дает ежегодно сотни тысяч тонн мочевины и нефтяного белка в качестве корма скоту и около 200 млн. т удобрений.

Столь впечатляющие успехи были достигнуты на основе учения о химических процессах -- области науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основу данного учения положены химическая термодинамика и кинетика, поэтому этот раздел науки в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов -- лауреат Нобелевской премии, основатель химической физики. Он в своей Нобелевской лекции 1965 г. заявил, что химический процесс -- это то основное явление, которое отличает химию от физики, делает ее более сложной наукой. Химический процесс становится первой ступенью при восхождении от таких относительно простых физических объектов, как электрон, протон, атом, молекула, к сложным, многоуровневым живым системам. Ведь любая клетка живого организма, по существу, представляет собой своеобразный сложный реактор. Поэтому химия становится мостом от объектов физики к объектам биологии.

Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций. Эти условия могут оказывать воздействие на характер и результаты химических реакций.

Подавляющее большинство химических реакций находится во власти стихии. Конечно, есть реакции, которые не требуют особых средств управления или особых условий. Таковы всем известные реакции кислотно-основного взаимодействия (нейтрализации). Однако подавляющее большинство реакций являются трудно контролируемыми. Есть реакции, которые просто не удается осуществить, хотя они в принципе осуществимы. Существуют реакции, которые трудно остановить: горения и взрывы. И, наконец, встречаются реакции, которые трудно ввести в одно желательное русло, так как они самопроизвольно создают десятки непредвиденных ответвлений с образованием сотен побочных продуктов. Поэтому важнейшей задачей для химиков становится умение управлять химическими процессами, добиваясь нужных результатов.

Методы управления химическими процессами

В самом общем виде методы управления химическими процессами можно подразделить на термодинамические и кинетические.

Термодинамические методы влияют на смещение химического равновесия реакции. Кинетические методы влияют на скорость протекания химической реакции.

Выделение химической термодинамики в самостоятельное направление обычно связывают с появлением в 1884 г. книги голландского химика Я. Вант-Гоффа «Очерки по химической динамике». В ней обоснованы законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. Энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии, называются экзотермическими реакциями. В них энергия высвобождается одновременно с уменьшением внутренней энергии системы. Существуют также эндотермические реакции, протекающие с поглощением энергии. В этих реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы.

Тогда же французский химик А. Ле-Шателье сформулировал свой знаменитый принцип подвижного равновесия, вооружив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических методов.

Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий протекания процесса. Существует много реакций, равновесие в которых смещено в сторону образования конечных продуктов: к ним относятся реакция нейтрализации, реакции с удалением готовых продуктов в виде газов или осадков.

Однако существует немало химических реакций, равновесие в которых смещено влево, в сторону образования исходных веществ. Чтобы их осуществить, требуются особые термодинамические рычаги -- увеличение температуры и давления (если реакция происходит в газовой фазе), а также концентрации реагирующих веществ (если реакция протекает в жидкой фазе).

Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость.

Управлением скоростью химических процессов занимается химическая кинетика, в которой изучается зависимость протекания химических процессов от различных структурно-кинетических факторов -- строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т.п. Задача исследования химических реакций является очень сложной. Ведь при ее решении необходимо выяснить механизм взаимодействия не просто двух реагентов, а еще и «третьих тел», которых может быть несколько. В этом случае наиболее целесообразно поэтапное решение, при котором вначале выделяется наиболее сильное действие какого-нибудь одного из «третьих тел», чаще всего катализатора.

Кроме того, следует понять, что практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.

Также на интенсивность химических процессов оказывают влияние случайные примеси. Вещества различной степени чистоты проявляют себя в одних случаях как более активные реагенты, а в других -- как инертные. Примеси могут оказывать как каталитическое, так и ингибирующее воздействие. Поэтому для управления химическим процессом в реагирующие вещества вносятся те или иные добавки.

Таким образом, влияние «третьих тел» на ход химических реакций может быть сведено к катализу, т.е. положительному воздействию на химический процесс, или ингибированию, сдерживающему процесс.

Как уже отмечалось выше, способность химических элементов к взаимосвязи определяется не только их молекулярной структурой, но и условиями, при которых происходит соединение. Эти условия оказывают воздействие на результат химических реакций. Наибольшее воздействие испытывают при этом вещества с переменным составом, у которых связи между отдельными компонентами слабее. Именно на реакцию таких веществ оказывают сильное влияние различные катализаторы.

Катализ -- ускорение химической реакции в присутствии особых веществ -- катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав конечных продуктов. Катализ был открыт в 1812 г. русским химиком К.С. Кирхгофом. Каталитические процессы различаются по своей физической и химической природе на следующие типы:

* гетерогенный катализ -- химическая реакция взаимодействия жидких или газообразных реагентов идет на поверхности твердого катализатора;

* гомогенный катализ -- химическая реакция идет либо в газовой смеси, либо в жидкости, где растворены как катализатор, так и реагенты;

* электрокатализ -- реакция идет на поверхности электрода в контакте с раствором и под действием электрического тока;

* фотокатализ -- реакция идет на поверхности твердого тела или в жидком растворе и стимулируется энергией поглощенного излучения.

Наибольшее распространение имеет гетерогенный катализ, -- с его помощью осуществляется 80% всех каталитических реакций в современной химии.

Применение катализаторов послужило основанием коренной ломки всей химической промышленности. Благодаря им стало возможным использовать в качестве сырья для органического синтеза парафины и циклопарафины, до сих пор считавшиеся «химическими мертвецами». Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (производство неорганических кислот, оснований и солей) и «тяжелого» органического синтеза, включая получение горюче-смазочных материалов, базируется на катализе. Последнее время тонкий органический синтез становится все более каталитическим. 60--80% всей химии основано на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.

Долгое время сам катализ оставался загадкой природы, вызывая к жизни самые разнообразные теории, как чисто химические, так и физические. Эти теории, даже будучи ошибочными, оказывались полезными хотя бы потому, что наталкивали ученых на новые эксперименты. Все дело в том, что для большинства промышленно важных химических процессов катализаторы подбирались путем бесчисленных проб и ошибок. Так, например, для реакции синтеза аммиака в 1913--1914 гг. немецкие химики испробовали в качестве катализаторов более 20 тысяч химических соединений, следуя периодической системе элементов и разнообразно сочетая их.

Сегодня можно сделать некоторые выводы о сущности катализа.

1. Реагирующие вещества вступают в контакт с катализатором, взаимодействуют с ним, в результате чего происходит ослабление химических связей. Если реакция происходит в отсутствие катализатора, то активация молекул реагирующих веществ должна происходить за счет подачи в реактор энергии извне.

2. В общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение ослабленных химических связей.

3. В подавляющем большинстве случаев в качестве катализаторов выступают соединения бертоллидного типа с переменным составом, отличающиеся наличием ослабленных химических связей или даже свободных валентностей, что придает им высокую химическую активность. Молекулы соединений бертоллидного типа содержат широкий набор энергетически неоднородных связей или даже свободные атомы на поверхности.

4. Следствиями взаимодействия реагентов с катализатором являются ход реакции в заданном направлении и увеличение скорости реакции, так как на поверхности катализатора увеличивается число встреч реагирующих молекул. Кроме того, катализатор захватывает некоторую часть энергии экзотермической реакции для энергетической подпитки все новых актов реакции и ее общего ускорения.

На современном этапе своего развития химия открыла множество эффективных катализаторов. Среди них -- ионнообменные смолы, металлорганические соединения, мембранные катализаторы. Каталитическими свойствами обладают многие химические элементы периодической системы, но важнейшую роль играют металлы платиновой группы и редкоземельные металлы.

С участием катализаторов скорость некоторых реакций возрастает в 10 млрд. раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).

Направление развития учения о химических процессах

В современных условиях одно из важнейших направлений развития учения о химических процессах -- создание методов управления этими процессами, поэтому химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.

Химия плазмы

Химия плазмы изучает химические процессы в низкотемпературной плазме при температурах от 1000 до 10 000°С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями протекания химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет около 10-13 с при почти полном отсутствии обратимости реакции. Скорость аналогичных химических процессов в обычных реакторах из-за обратимости снижается в тысячи раз. Поэтому плазмохимические процессы очень производительны. Например, производительность метанового плазмохимического реактора (его размеры: длина -- 65 см, диаметр -- 15 см) составляет 75 т ацетилена в сутки. В этом реакторе при температуре 3000--3500°С за одну десятитысячную долю секунды около 80% метана превращается в ацетилен.

Плазменная химия в последнее время все больше внедряется в промышленное производство. Уже созданы технологии производства сырья для порошковой металлургии, разработаны методы синтеза для целого ряда химических соединений. В 1970-е гг. были созданы плазменные сталеплавильные печи, позволяющие получать самые высококачественные металлы. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз.

Плазмохимия позволяет синтезировать ранее неизвестные материалы, такие, как металлобетон, в котором в качестве связующего элемента используются различные металлы. Металлобетон образуется при сплавлении частиц горной породы и прочном сжатии их с металлом. По своим качествам он превосходит обычный бетон в десятки и сотни раз.

Радиационная химия

Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе получение полимербетонов путем пропитки обычного бетона каким-либо полимером с его последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозионной стойкостью.

Химия высоких давлений и температур

Принципиально новой и исключительно важной областью учения о химических процессах является само распространяющийся высокотемпературный синтез тугоплавких и керамических материалов. Обычно их производство осуществляется методом порошковой металлургии, суть которого заключается в прессовании и сжатии при высокой температуре (1200--2000°С) металлических порошков. Само распространяющийся синтез происходит гораздо проще: он основан на горении одного металла в другом или горении металла в азоте, углероде, кремнии и т.п.

Давно известно, что процесс горения представляет собой соединение кислорода с горючим веществом, поэтому горение -- это реакция окисления горючего вещества. При этом происходит перемещение электронов от атомов окисляемого вещества к атомам кислорода. С этой точки зрения горение возможно не только в кислороде, но и в других окислителях. На этом выводе и основан само распространяющийся высокотемпературный синтез -- тепловой процесс горения в твердых телах. Он представляет собой, например, горение порошка титана в порошке бора, или порошка циркония в порошке кремния. В результате такого синтеза получаются сотни тугоплавких соединений самого высокого качества.

Очень важно, что данная технология не требует громоздких процессов, отличается высокой технологичностью и легко поддается автоматизации.

Химия высоких давлений

Еще одна область развития учения о химических процессах -- химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм -- к химии сверхвысоких давлений. Высокие давления в химии используются с начала XX в. -- аммиачное производство осуществлялось при давлении 300 атм и температуре 600°С. Но в последнее время используются установки, в которых достигается давление 5000 атм, а испытания проводятся при давлении 600 000 атм, которое достигается за счет ударной волны при взрыве в течение миллионной доли секунды. При ядерных взрывах возникают еще более высокие давления.

При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102--103 атм исчезает различие между жидкой и газовой фазами, а при 103--105 атм -- между твердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства веществ. Например, при давлении 20 000 атм металл становится эластичным, как каучук. Обычная вода при высоких температуре и давлении становится химически активной. С повышением давления многие вещества переходят в металлическое состояние. Так, в 1973 г. ученые наблюдали металлический водород при давлении 2,8 млн. атм.

Одним из важнейших достижений химии сверхвысоких давлений стал синтез алмазов. Он идет при давлении 50 000 атм и температуре 2000°С. При этом графит кристаллизуется в алмазы. Также алмазы можно синтезировать и с применением ударных волн. В последнее время ежегодно производятся тонны синтетических алмазов, которые лишь незначительно отличаются от природных по своим свойствам. Получающиеся алмазы используются для промышленных целей -- в режущем и буровом оборудовании. Удалось синтезировать черные алмазы -- карбонадо, которые тверже природных алмазов. Они используются для обработки самих алмазов.

В настоящее время налажено промышленное производство не только искусственных алмазов, но и других драгоценных камней -- корунда (красного рубина), изумруда и др. При высоких давлениях синтезируют и другие материалы, отличающиеся высокой термостойкостью. Так, из нитрида бора при давлении 100 000 атм и температуре 2000°С синтезирован боразон -- материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах.

Энергетика химических процессов и систем

Химические реакции - взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химические реакции в отличие от ядерных не изменяют ни общего числа атомов в системе, ни изотопного состава элементов.

Система - совокупность тел, выделенная из пространства. Если в системе возможен массо и теплообмен между всеми ее составными частями, то такая система называется термодинамической. Химическая система, в которой возможно протекание реакций, представляет собой частный случай термодинамической. Если между системой и окружающей средой отсутствует массо и теплообмен, то такая система называется изолированной. Если отсутствует массообмен, но возможен теплообмен, то система называется закрытой. Если же между системой и окружающей средой возможен и массо, и теплообмен, то система открытая. Система, состоящая из нескольких фаз, называется гетерогенной, однофазная система - гомогенной.

Состояние химической системы определяется свойствами: температура, давление, концентрация, объем, энергия.

Реакции, протекающие в гомогенной системе, развиваются во всем ее объеме и называются гомогенными. Реакции, происходящие на границе раздела фаз - гетерогенными.

Для термодинамического описания системы пользуются так называемыми функциями состояния системы - это любая физическая величина, значения которой однозначно определяются термодинамическими свойствами системы. К важнейшим функциям состояния системы относятся:

Полная энергия системы (Е);

Внутренняя энергия системы (U);

Энтальпия (или теплосодержание) - это мера энергии, накапливаемая веществом при его образовании (Н):

Энтропия - мера неупорядоченности системы (S);

Энергия Гиббса - мера устойчивости системы при постоянном давлении (G):

Энергия Гельмгольца - мера устойчивости системы при постоянном объеме (F):

Судить о возможности самопроизвольного протекания процесса можно по знаку изменения функции свободной энергии Гиббса: если?G < 0, т.е. в процессе взаимодействия происходит уменьшение свободной энергии, то процесс термодинамически возможен. Если?G > 0, то протекание процесса невозможно. Таким образом, все процессы могут самопроизвольно протекать в сторону уменьшения свободной энергии.

Химическое взаимодействие, как правило, сопровождается тепловым эффектом. Процессы, протекающие с выделением теплоты, называются экзотермическими (?Н < 0), а идущие с поглощением теплоты - эндотермическими (?Н > 0).

Тепловой эффект химических процессов в изобарных условиях определяется изменением энтальпии, т.е. разницей энтальпий конечного и исходного состояний. Согласно, закону Лавуазье-Лапласа: теплота, выделяющаяся при образовании вещества, равна теплоте, поглощаемой при разложении такого же его количества на исходные составные части.

Более глубокие обобщения термохимических закономерностей дает закон Гесса: тепловой эффект химических реакций, протекающих или при постоянном давлении, или при постоянном объеме, не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состояниями системы.

I закон термодинамики (закон сохранения энергии) - энергия не исчезает и не возникает вновь из ничего при протекании процесса, она лишь может переходить из одной формы в другую в строго эквивалентных отношениях.

II закон термодинамики - при протекании процесса в изолированной системе обратимых процессов энтропия остается неизменной, а при необратимых процессах увеличивается. .

Заключение

Химия - наука социальная. Её высшая цель - удовлетворять нужды каждого человека и всего общества. Многие надежды человечества обращены к химии. Молекулярная биология, генная инженерия и биотехнология, наука о материалах являются фундаментально химическими науками. Прогресс медицины и охраны здоровья - это проблемы химии болезней, лекарств, пищи; нейрофизиология и работа мозга - это, прежде всего нейрохимия, химия, химия памяти. Человечество ждёт от химии новых материалов с магическими свойствами, новых источников и аккумуляторов энергии, новых чистых и безопасных технологий, и т.д.

Как фундаментальная наука химия сформировалась в начале XX века, вместе с новой, квантовой механикой. И это бесспорная истина, потому что все объекты химии - атомы, молекулы, ионы, и т.д. - являются квантовыми объектами. Главные события в химии - химические реакции и химические процессы т.е. перегруппировка атомных ядер и преобразование электронных оболочек, электронных одежд молекул-реагентов в молекулы продуктов - также является квантовым событием.

Необходимость химических процессов возникает под влиянием новых требований производства. Способы решения основной проблемы химии основанной на учении о составе и структурных теориях изученных ранее, был явно не достаточен тут и возникает новый уровень - уровень химических знаний - знаний о химических процессах. Химия становится наукой уже не только и не столько веществах, как законченных предметах, но наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила производство синтетических материалов.

В современном обществе учения о химических процессах необходимые знания, так как науке нужно развиваться и стремиться к новым открытиям, а этому может способствовать только человек.

Список использованной литературы

1. Бочкарёв А. И. - Концепции современного естествознания: учебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов; под ред. проф. А. И. Бочкарёва. - Тольятти: ТГУС, 2008. - 386 с. [электронный ресурс]www.tolgas.ru (дата обращения 14.11.2102)

2. Садохин А.П. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. -- 2-е изд., перераб. и доп. -- М.: ЮНИТИ-ДАНА, 2006. - 447 с.[электронный ресурс] http://www.twirpx.com/file/20132/ (дата обращения: 10.12.2102)

Размещено на Allbest.ru

...

Подобные документы

    Определение биосферы, ее эволюция, границы и состав, охрана. Свойства живого вещества. Биогенная миграция атомов. Биомасса, её распределение на планете. Роль растений, животных и микроорганизмов в круговороте веществ. Биосфера и превращение энергии.

    контрольная работа , добавлен 15.09.2013

    Порядок, беспорядок в природе, особенности теплового движения как пример хаотического, неорганизованного порядка. Феномен процесса рассеяния энергии. Химические процессы и свойства веществ. Качество тел в ракете в условиях высокой скорости движения.

    курсовая работа , добавлен 11.03.2010

    Исследование теории самоорганизации. Основной критерий рaзвития сaмооргaнизующихся систем. Неравновесные процессы и открытые системы. Самоорганизация диссипативных структур. Химическая реакция Белоусова-Жаботинского. Самоорганизация в физических явлениях.

    реферат , добавлен 30.09.2010

    Вивчення будови ядра як одного із структурних елементів еукаріотічеськой клітки, що містить генетичну інформацію в молекулах ДНК. Ядерна оболонка, ядерце, матрикс як структурні елементи ядра. Характеристика процесів реплікації і транскрипції молекул.

    презентация , добавлен 08.01.2012

    Анализ механизмов прохождения веществ через клеточную мембрану. Основные процессы, с помощью которых вещества проникают через мембрану. Свойства простой и облегченной диффузии. Типы активного транспорта. Ионные каналы, их отличие от поры, градиент.

    презентация , добавлен 06.11.2014

    Превращение азотистых веществ в растениях. Качество растительных масел в зависимости от факторов внешней среды. Превращение веществ при созревании семян масленичных культур. Яровизация, ее суть и значение. Влияние температуры и света на покой семян.

    контрольная работа , добавлен 05.09.2011

    Анализ возможных путей расщепления глюкозы. Определение составляющих и принципа функционирования аэробного метаболизма. Процессы образования органических кислот и биотрансформации исходных субстратов, отличных от углеводов по своей химической природе.

    реферат , добавлен 09.06.2015

    Потоки вещества, энергии и деструкционные блоки в экосистемах. Проблемы биологической продуктивности. Пирамиды чисел, биомасс и энергии. Процессы трансформации вещества и энергии между биотой и физической средой. Биохимический круговорот веществ.

    реферат , добавлен 26.06.2010

    Закон тяготения Ньютона. Специальная теория относительности. Второе начало термодинамики. Представления о строении атомов. Методы химической кинетики. Понятия равновесия, равновесного излучения. Реакции синтеза ядер. Особенности биотического круговорота.

    контрольная работа , добавлен 16.04.2011

    Описание основных функций, выполняемых процессами выделения веществ у растений. Понятие аллелопатии, экскреции и секреции. Функции специализированных секреторных структур у растений. Группы эпидермальных образований, участвующих в выделении веществ.

Химическая реакция - это превращение одного или нескольких исходных веществ в отличающиеся от них по химическому составу или строению вещества. Исходные вещества, всупающие в химическую реакцию, называютсяреагентами . Вещества, образующиеся при взаимодействии реагентов называютсяпродуктами реакции . В отличие от ядерных реакций, при химических реакциях не изменяется ни общее число атомов в реагирующей системе, ни изотопный состав химических элементов. Это связано с тем, что химические процессы не затрагивают ядер атомов, входящих в состав молекул реагентов. Эти процессы осуществляются за счет взаимодействия валентных электронов и сопровождаются изменением строения внешних электронных оболочек атомов реагентов.

По числу и составу исходных веществ и продуктов реакции выделяют четыре основных типа химических реакций:

c оединения из нескольких простых или сложных веществ образуется одно сложное: 2Cu + O 2 = 2CuO;

разложения – из сложного вещества образуется несколько простых или сложных веществ: 2H 2 O = 2H g + O 2 ;

замещения –атом простого вещества замещает один из атомов сложного:

Fe+CuSO 4 =FeSO 4 +Cu;

обмен а – сложные вещества обмениваются своими составными частями:

NaCl+H 2 SO 4 = НСl+NaHSO 4 .

По изменению степени окисления атомов выделяют:

 реакции без изменения степени окисления (например, реакции ионного обмена) :

NaOH+HCl=NaCl+H 2 O;

 реакции с изменением степени окисления (окислительно-восстановительные реакции ): H 2 + Cl 2 = 2HCl.

По тепловому эффекту выделяют реакции:

экзотермические – реакции, протекающие с выделением энергии:

4Al + 3O 2 = 2Al 2 O 3 + Q;

эндотермические – реакции, сопровождающиеся поглощением энергии:

СаСО 3 = СаО + СО 2 – Q.

По необходимости присутствия других веществ выделяют реакции:

каталитические – идущие только с участием катализаторов:SO 2 + O 2 SO 3 ;

некаталитические – идущие без участия катализаторов:2NO + O 2 = 2NO 2 .

По обратимости выделяют реакции:

необратимые – протекающие до полного превращения исходных веществ в продукты, при необратимой реакции в растворе образуется малодиссоциирующее вещество – осадок, газ, вода:BaCl 2 +H 2 SO 4 =BaSO 4 ↓ + 2HCl;

обратимые – протекающие как в сторону получения продуктов реакции, так и в сторону получения исходных веществ:N 2 + 3H 2 ↔2CO 2 .

Способность к взаимодействию различных химических реагентов определяется не только их атомарно-молекулярной структурой, но и условиями протекания химических реакций. К ним относятся термодинамические факторы (температура, давление и др.) и кинетические (все, что связано с переносом веществ, образованием их промежуточных форм). Их влияние на химические реакции вскрывается на концептуальном уровне химии, который обобщенно называют учением о химических процессах .

Учение о химических процессах является областью глубокого взаимопроникновения физики, химии и биологии. Действительно, в основе этого учения лежатхимическая термодинамика икинетика , которые в равной степени относятся и к химии, и к физике. А живая клетка, исследуемая биологической наукой, представляет собой в то же время микроскопический химический реактор, в котором происходят превращения, многие из которых химия изучает и пытается реализовать в макроскопическом масштабе. Таким образом, человек вскрывает глубокую связь, существующую между физическими, химическими и биологическими явлениями, и одновременно перенимает у живой природы опыт, необходимый ему для получения новых веществ и материалов.

Большинство современных химических технологий реализуется с использованием катализаторов – веществ, которые увеличивают скорость реакции, не расходуясь в ней.

В современной химии также получило развитие направление, принципом которого является энергетическая активация реагента (то есть подача энергии извне) до состояния полного разрыва исходных связей. В данном случае речь идет о больших энергиях. Это так называемаяхимия экстремальных состояний , использующая высокие температуры, большие давления, излучение с большой величиной энергии кванта (ультрафиолетовое, рентгеновское, гамма-излучение). К этой области относятсяплазмохимия (химия на основе плазменного состояния реагентов), а также технологии, в которых активация процесса достигается за счет направленных электронных или ионных пучков(элионные технологии).

Химия экстремальных состояний позволяет получать вещества и материалы, уникальные по своим свойствам: композитные материалы, высокотемпературные сплавы и металлические порошки, нитриды, силициды и карбиды тугоплавких металлов, разнообразные по своим свойствам покрытия.

При решении разнообразных термодинамических задач используют особые функции – термодинамические потенциалы. Зная выражение термодинамических потенциалов, через независимые параметры системы можно вычислить и другие характеристики процессов. Приведем некоторые из них.

Подставив в выражение для первого начала термодинамики dQ = dU + dA формулы для работыdA = pdV и количества теплоты в обратимом процессеdQ = TdS , получимdU = TdS pdV (1).

Это выражение, объединяющее первое и второе начала термодинамики, является полнымдифференциалом внутренней энергии, а общее уравнение для полного дифференциала таково:

Сопоставив его с выражением (1), получим:

Итак, частная производная от внутренней энергии по энтропии равна температуре, взятая с обратным знаком производная по объему равна давлению, а сама внутренняя энергия является термодинамическим потенциалом. Другой термодинамический потенциал ввел Г. Гельмгольц (1877). Он показал, что функция F = U TS , называемая свободной энергией, может быть критерием термодинамического равновесия.

Найдем полный дифференциал свободной энергии: dF = dU TdS SdT , тогда, используя выражение (1), можно записать:dF = TdS pdV TdS SdT = – SdT pdV . Учитывая (как и ранее), чтоdF является полным дифференциалом от переменныхT иV , получаем:

.

Физический смысл свободной энергии F ясен из выражения дляdF . ПриT = constdT = 0, тогдаdF = – pdV = – dA , то есть уменьшение свободной энергии равно работе, совершаемой системой в изотермическом процессе. Сохранение постоянной температуры тела у живых организмов позволяет считать, что производимая ими работа совершается за счет уменьшения свободной энергии.

Важным для химических процессов является и термодинамический потенциал, так называемая функция Гиббса (G ): G = F + pV = U TS + pV . Продифференцировав, получим:dG = dU TdS SdT + pdV + VdP . С учетом уравнения (1) последнее уравнение можно переписать так:dG = TdS pdV TdS SdT + pdV + Vdp = – SdT + Vdp . Сравнивая полученное уравнение с выражением для полного дифференциала, запишем:

.

Потенциал Гиббса используют при расчетах энтропии и объема в изобарно-изотермических процессах. При стремлении системы к равновесию в необратимом изобарно-изотермическом процессе dQ TdS , и для дифференциала Гиббса используют уже вместо написанного выше равенства следующее: dG –SdT + VdP . Но поскольку в этом процессеdT = 0,dp = 0, то иdG 0. И это будет выполняться до установления равновесного состояния, когда иdG станет равно нулю. Можно сказать, что в неравновесных изобарно-изотермических процессах функция Гиббса убывает до минимума в состоянии равновесия. В изотермических процессах, происходящих без изменения объема, убывает также потенциал Гельмгольца – свободная энергия.

При изменении числа частиц в системе вводят так называемый химический потенциал (). Тогда вместо уравнения (1) следует писать: dU = TdS pdV + dN . ЗдесьdN изменение числа частиц в системе. Соответственно изменятся и выражения для других потенциалов:dF = – SdT pdV + dN ,dG = – SdT + Vdp + dN . Тогда для химического потенциала при постоянных парах соответствующих параметров (S ,V ), (T ,V ), (T ,p ) можно записать:

.

Итак, термодинамический потенциал равен изменению потенциала, приходящегося на одну частицу в соответствующем процессе. И реакция возможна, если она сопровождается уменьшением величины потенциала. Когда камень падает в поле тяготения, уменьшается его потенциальная энергия. Подобный процесс наблюдается и в химической реакции: когда она идет, ее свободная энергия переходит на более низкий уровень. В этих примерах аналогия полная, поскольку нет изменения энтропии. Но в химических реакциях изменение энтропии необходимо учитывать, и возможность реакции еще не означает, что она пойдет самопроизвольно. Термодинамика объясняет: реакция пойдет только при уменьшении энергии веществ и увеличении энтропии. Энтропия растет, так как в малой молекуле расположение атомов менее упорядочено, чем в большой.

Но реальные процессы и состояния чаще всего являются неравновесными, а системы –открытыми. Такие процессы рассматриваются внеравновесной термодинамике.

Химико-технологическим процессом, как было показано выше, называют сочетание связанных друг с другом и проводимых в определенной последовательности химических, физико-химических, физических и механических операций с целью получения конечного продукта. Собственно химический процесс это вторая и главная подсистема ХТС. Эффективность его требует соблюдения некоторых условий, содержание которых определяется технологическим режимом.

Технологический режим – это совокупность параметров, обеспечивающих устойчивое и максимально эффективное проведение химического процесса.

Параметром технологического процесса называют величину, характеризующую один из показателей режима работы аппарата. Как правило, параметр – это количественная величина, позволяющая дать количественную оценку работы аппарата. Основными параметрами химического процесса являются температура, давление, соотношение реагентов, их расход в единицу времени, время контакта, объемная скорость подачи сырья, активность катализатора, коэффициент рециркуляции, сила тока, напряжение и т.д. Сочетание оптимальных параметров позволяет вести процесс с максимально возможными выходом и качеством целевого продукта с высокой скоростью и минимальной себестоимостью.

Как было сказано выше, химический процесс составляет главную подсистему – химического превращения сырья. Он протекает в одну или несколько химических реакций, сопровождаемых явлениями массо- и теплообмена. Если процесс химического превращения протекает в одну стадию в соответствии со стехиометрическим уравнением, то его называют простым. Остальные реакции являются сложными. К ним можно отнести обратимые, цепные, параллельные, последовательные, сопряженные и другие реакции. Химические реакции классифицируются по ряду признаков:

По фазовому состоянию реакционной системы (гомофазное илигетерофазное );

По механизму взаимодействия;

По обратимости (обратимые и необратимые );

По знаку теплового эффекта [экзотермические (+ Н ) и эндотермические (- Н )];

По применению катализатора (каталитические и некаталитические );

По температуре (низкотемпературные и высокотемпературные );

По порядку реакции.

Ниже представлена табл. 5.1 технологической классификации химических реакций.

Интенсификация гомогенных процессов. Если реакция протекает в объеме фазы, то она называется гомогенной. К гомогенным реакциям относят, например, реакции в растворах. В гомогенных системах реакция протекает во всем объеме реактора. Скорость реакции в таких процессах возможно интенсифицировать изменением состава реакционной среды, температуры и давления.

Влияние состава реакционной среды зависит от величины концентрации реагентов и их физико-химических свойств.

Известно, что, согласно закону действующих масс, для гомогенной реакции типа
aA + bB cC + dD записывается так:

(- V A) = kC a A C b B , (5.1)

где (V A) – скорость химической реакции;

С А, С В – молярные концентрации реагентов А и В;

a, b - порядок реакции по реагентам А и В;

k - константа скорости реакции.

Таблица 5.1

Признак классификации Примеры химических реакций
1. Механизм и химизм реакции: - простая необратимая - простая обратимая - с неблагоприятным равновесием - сложная необратимая - параллельная предыдущей - последовательная (консекутивная) - сложная обратимая 2KClO 3 =2KCl + 3O 2 SO 2 + 0,5O 2 SO 3 3H 2 + N 2 2NH 3 NH 3 + 1,25 O 2 = NO + 1,5H 2 O NH 3 + 1,5 O 2 = N 2 + 3H 2 O С 6 Н 5 СН 3 +О 2 = С 6 Н 5 СН 2 ООН= С 6 Н 5 СНО +Н 2 О СО + Н 2 О СО 2 + Н 2 СО + Н 2 О СН 3 ОН
2. Величина и знак теплового эффекта реакции: - сильноэкзотермическая - слабоэкзотермическая - сильноэндотермическая - слабоэндотермическая SO 2 + O 2 + 297 кДж/моль С 6 Н 12 = СН 3 (СН 2) 2 СН=СН-СН 3 + 59,9 кДж/моль С 6 Н 12 = С 6 Н 6 + 3Н 2 – 221 кДж/моль ROH + R 1 COOH RCOOR 1 + H 2 O – 50 кДж/моль
3. Кинетическая модель–порядок реакции: - нулевой - первый - второй - третий - дробный Уравнение скорости реакции: -V A = kC A =k -V A = kC A -V = kC A C B ; -V = kC 2 A ; -V = kC 2 B -V = kC 2 A C B ; -V = k C A C B 2 -V = kC A C D 1,5
4. Способ активации системы: влияние температуры реакции: - высокотемпературная (более 500 о С) - среднетемпературная (160-500 о С) - низкотемпературная (менее 160 о С) - реакция под давлением - реакции каталитические, электро-химические, фотохимические и др Пиролиз углеводородного сырья Окисление парафинов Алкилирование изобутана олефинами Каталитический крекинг Каталитический риформинг, галогенирование парафинов

А, В – исходные реагенты;

V – скорость реакции;

k - константа скорости;

С – концентрация.

Таким образом, скорость реакции пропорциональна произведению концентраций реагентов, взятых в степенях, равным порядку реакции, на основе чего следуют выводы:

1) чем выше значение концентраций, тем больше скорость реакции;

2) скорость реакции в большей степени зависит от реагента, входящего в уравнение скорости с большей степенью;

3) если одновременно протекают реакции с разными порядками, то изменение концентрации сильнее скажется на скорости реакции с более высоким порядком.

Данные закономерности лежат в основе технологического приема – избытка одного из реагентов. При этом выгоднее в избытке брать реагент, входящий в уравнение реакции с более высоким стехиометрическим коэффициентом. Но существует ряд причин, по которым во многих газофазных и жидкофазных процессах реагенты разбавляют растворителем, т.е. понижая их концентрацию. Этому есть несколько причин:

а) возможность перегрева реакционной массы при проведении сильно экзотермической реакции с большой скоростью;

б) использование низких концентраций – требование селективного протекания сложных реакций, если побочная реакция более высокого порядка;

в) улучшения условий протекания сопровождающих реакцию физических процессов, т.к. разбавление позволяет понизить вязкость, облегчить равномерное перемешивание реакционной массы и ее транспорт, обеспечить более интенсивный и равномерный теплообмен.

Влияние температуры на скорость реакции описывается уравнением Аррениуса:

k = A е - E / RT (5.2)

где k – константа скорости;

А – предэкспоненциальный множитель;

Е - энергия активации, кДж/моль ;

R - газовая постоянная, кДж/моль ;

Т – температура, о К .

Из этого уравнения следует, что, поскольку температура входит в показатель степени, то она оказывает очень большое влияние на скорость реакции. По этой же причине существенно влияние на скорость значения энергии активации, но с другим знаком.

Применяемый в химической технологии диапазон давлений очень широк. В нефтепереработке в большой части процессов давление составляет в пределах 1-5 МПа , но есть процессы с давлением до 32МПа (гидрокрекинг) и в вакууме (ректификация мазута). В нефтехимии известны процессы при давлении до 100Мпа (полимеризация этилена). Имеется несколько причин, по которым повышенное давление, несмотря на высокие энергозатраты, широко применяется в химической технологии:

1. Давление существенно повышает скорость газофазных процессов, т.к. в этом случае резко повышается концентрация реагентов.

2. Давление влияет на положение химического равновесия для обратимых реакций, при этом повышение давления смещает равновесие в сторону прямой реакции, если процесс протекает с уменьшением объема.

3. Давление повышает температуры кипения и плавления. Этот эффект используется для проведения процессов жидкой фазе для веществ, которые при стандартном давлении находятся в газообразном состоянии.

4. Повышение давления во многих случаях позволяет снизить температуру синтеза, что важно в системах с низкой термостабильностью реагентов или продуктов процесса.

Интенсификация гетерогенных процессов. Гетерогенные системы состоят из непрерывной (сплошной) среды и дискретной фазы, включающей один или более компонентов. Примеры таких систем приведены в табл. 5.2.

В гетерогенной системе областью химического взаимодействия являются поверхности раздела фаз.

Скорость гетерогенной реакции является сложной функцией параметров нескольких процессов, протекающих параллельно: массопередачи извне в реакционную среду, собственно химической реакции и выведения продуктов процесса из реакционного пространства.

Элементарные стадии гетерогенной реакции протекают с разной скоростью. При этом в условиях стационарного процесса скорости всех стадий будут одинаковы и равны скорости самой медленной стадии. Эту стадию называют лимитирующей. Поэтому, в гетерогенных процессах их интенсификация связана с ускорением лимитирующей стадии.

Для решения этой проблемы в теорию гетерогенных процессов введено понятие области протекания реакции. По этой теории гетерогенная реакция может протекать в кинетической, диффузионной или переходной (диффузионно-кинетической) области. Название этих областей связано непосредственно с лимитирующей стадией.

Таблица 5.2

Типы дисперсных систем

Дисперсная фаза – дисперсная среда Тип систем Примеры
Т- Ж Золи, суспензии, взвеси Золи металлов, гидровзвеси
Ж - Ж Эмульсии Технологические эмульсии, смазки
Г – Ж Пены, газовые эмульсии Пены, барботажный слой, кипящая и кавитирующая жидкость
Т – Т Твердые коллоиды Сплавы
Ж – Т Пористые тела, капиллярные системы Адсорбентя, влажные тела, иониты, фильтрующие слои
Г – Т Пористые и капиллярные системы Силикагель, активные угли, цеолиты, катализаторы, мембраны, фильтры
Т – Г Аэрозоли, взвеси Дымы, псевдоожиженный слой
Ж – Г Аэрозоли Туманы, капельные выбросы
Г - Г Неоднородные газы Расслаивающиеся газы, флуктуации плотности в газах

Г – газ; Ж – жидкость; Т – твердое тело

Если лимитирующей стадией является химическое превращение, то говорят о кинетической области протекания процесса. К числу кинетических факторов относят температуру, давление, концентрацию реагентов и катализатора, природу и активность последнего и др.

Если лимитирующей стадией является скорость массопередачи, то реакция протекает в диффузионной области . Известно, что для процессов, протекающих в этой области, скорость пропорциональна площади границы раздела фаз и движущей силе процесса (изменению концентрации), под действием которой происходит массопередача:

V = k S C , (5.3)

где k – коэффициент пропорциональности;

S – площадь поверхности раздела фаз;

C – изменение концентрации.

Из данного уравнения следует, что скорость процесса можно поднять, увеличив площадь соприкосновения фаз. Эта цель достигается измельчением твердого катализатора и развития его внутренней структуры (пористости). В системах с участием жидких продуктов для увеличения поверхности контакта применяют такие приемы, как использование насадочных устройств, барботаж, пенный слой и т.д. Значение константы скорости определяется следующим соотно-шением:

k = D/ (5.4)

где D – коэффициент диффузии;

Толщина диффузионного пограничного слоя.

С повышением температуры коэффициент диффузии возрастает, но в значительно меньшей степени, чем скорость химической реакции. Тем не менее, температурный фактор часто используется для повышения скорости диффузионных процессов. Более эффективным является прием интенсификации перемешивания контактирующих фаз, чем достигается уменьшение толщины диффузионного слоя, что приводит к резкому увеличению константы скорости процесса массопередачи.

Для увеличения движущей силы процессов массопередачи (С ), который является градиентом концентраций:

С = С – С * ,

где С и С * - действительная и равновесная концентрации компонента в передающей фазе, используют следующие приемы:

1) повышение концентрации компонентов сырья;

2) удаление продуктов процесса из реакционной зоны;

3) смещение равновесия в направлении, повышающем градиент концентрации С .

Таким образом, к диффузионным факторам, определяющим интенсивность процессов массопередачи, можно отнести линейные скорости движения фаз, число оборотов перемешивающих устройств, характеристики границы раздела фаз и др. Поскольку диффузионные факторы во многом определены гидродинамикой потоков, то их часто называют гидродинамическими.

Если скорости массопередачи и реакции соизмеримы, то говорят, что процесс протекает в переходной области.

Проведение реакции в кинетической области (отсутствует диффузионное торможение) наиболее предпочтительно с точки зрения кинетики, однако ряд промышленных процессов реально осуществляют в диффузионной области. Это касается прежде всего высокотемпературных процессов, когда трудно избежать диффузионных торможений по причине высоких скоростей химических реакций.

Подводя итоги, можно сделать следующие выводы:

Скорость гетерогенной реакции определяется скоростью лимитирующей стадии;

В качестве лимитирующих могут быть как процессы химического превращения, так и процессы массопередачи;

Для интенсификации гетерогенной реакции следует использовать как кинетические, так и диффузионные факторы;

Для интенсификации процессов, протекающих в кинетической области, следует применять кинетические факторы, а в диффузионной – диффузионные.

Интенсификация процессов, основанных на необратимых реакциях. К необратимым относят реакции, протекающие только в прямом направлении. При разработке технологии проведения такого процесса преследуют две основные цели: повышение скорости реакции и выхода целевого продукта. Выход продукта в таких процессах пропорционален степени пре При разработке технологии проведения сложной необратимой реакции все внимание уделяют повышению селективности процесса. Эта цель достигается подбором оптимальных концентраций реагентов и температур, а также подбором наиболее селективных катализаторов.

Селективность S реакции можно оценить соотношением скоростей основной и побочной реакций:

S = V 1 / V 2 =k 1 C A a / k 2 C A b = k C A a – b , (5.5)

где k = k 1 / k 2 .

На основе данного уравнения можно сделать выводы о влиянии концентрации на селективность:

1) при a > b (порядок целевой реакции выше побочной) селективность пропорциональна максимальному значению концентрации;

2) при a < b селективность пропорциональна минимальным значениям концентрации;

3) при a = b концентрация не влияет на селективность: S = kC A 0 = k.

Катализ – наиболее сильное воздействие на селективность реакции. Катализ – это сложная система реакций, в результате которых снижаются многие затруднения в протекании реакции по сравнению с некатализируемым процессом. Этот эффект связан с понижением энергии активации и / или увеличением предэкспоненциального множителя в кинетическом уравнении реакции.

Интенсификация процессов, основанных на обратимых реакциях. К обратимым относят реакции, протекающие одновременно в прямом и обратном направлениях.

В обратимой реакции aA + bB = dD в соответствии с законом действующих масс, скорости прямой и обратной реакций будут следующие:

V пр = k / C A a C B b ; (5.6)

V об = k // C D d , (5.7)

где С – концентрация;

k / , k // - константы скорости прямой и обратной реакций;

a, b, d –стехиометрические коэффициенты (порядки реакции) при участниках процесса A, B, D.

Суммарная скорость обратимой реакции равна разности скоростей прямой и обратной реакции: V = V пр - V обр В момент равновесия V пр = Vобр

C D d / C A a C B b = k / / k // = K р, (5.8)

где К Р – константа равновесия.

Степень превращения, при которой устанавливается равновесие, называют равновесной. В производственных условиях систему, как правило, не доводят до состояния равновесия, т.к. в состоянии равновесия производительность реактора равна нулю. Реактор работает в режиме, удаленном от состояния равновесия, в зависимости от стоимости затрат на смещение равновесия в направлении образования продуктов реакции.

Существуют реакции с легко смещаемым равновесием и с неблагоприятным положением равновесия, для которых приемлемая конверсия может составлять 30 % и даже меньше.

Смещение равновесия при изменении давления, температуры, концентрации подчиняется принципу Ле-Шателье, которое гласит: внешнее воздействие на систему с установившимся равновесием смещает его в сторону уменьшения этого воздействия.

В качестве примера действия принципа Ле-Шателье рассмотрим реакцию синтеза аммиака: 3Н 2 + N 2 2NH 3. Эта реакция – простая обратимая, экзотермическая, протекающая с уменьшением объема. Увеличение концентрации одного из реагентов приведет к возрастанию скорости прямой реакции, т.е. в сторону образования целевого продукта. В этом случае движущей силой процесса является величина внешнего воздействия.

Такой же эффект можно получить при увеличении давления в системе. Действительно, повышая давление, мы увеличиваем концентрацию всех участников процесса, но увеличение концентрации реагентов будет более значительным, т.к. число молей исходных веществ больше, чем продуктов реакции. Движущей силой этого процесса является разность объемов конечных и исходных продуктов. Поэтому, в случае равенства объемов конечных и исходных продуктов сместить равновесие путем изменения давления в системе невозможно.

Влияние изменения температуры на смещение равновесия в данной реакции таково. Поскольку реакция экзотермическая, то сместить равновесие в направлении образования аммиака возможно путем понижения температуры процесса. Движущей силой в этом случае является абсолютная величина такого изменения температуры.

Принцип Ле-Шателье позволяет качественно оценить влияние основных параметров процесса на направление протекания обратимой химической реакции. Количественную оценку на смещение равновесия при изменении температуры или саму возможность протекания данной реакции при постоянном давлении (а именно при постоянном давлении в промышленных химико-технологических процессах, как правило, ведут химические реакции) можно, если известны знак и величина изменения в этом процессе свободной энергии Гиббса:

G = G кон. - G нач . , (5.9)

где G нач. и G кон . – значения свободной энергии Гиббса реагентов и продуктов процесса.

Отрицательное значение этой разности означает принципиальную возможность протекания реакции в прямом направлении. Чем больше абсолютная величина этой разности, тем больше движущая сила процесса.

Как известно:

G = H - T S , (5.10)

где H = H кон. - H нач . – изменение энтальпии;

S = S кон. – S нач. – изменение энтропии;

Н нач. , Н кон. , S нач., S кон . – состояния системы, отвечающие начальным и конечным значениям энтальпии и энтропии соответственно.

В соответствии с этим уравнением значение и знак G определяется значениями , S , и T .

Согласно 1-му закону термодинамики:

Н = U - P V , (5.11)

где U - изменение внутренней энергии;

V –изменение объема при Р = соnst.

В рассматриваемых условиях Н равна по абсолютной величине, но противоположна по знаку теплового эффекта реакции Q (Q = - H ).

Изменение энтропии в первом приближении можно оценить, учитывая, что ее можно рассматривать как меру беспорядка системы. Процессы, протекающие с его возрастанием (расширение газа, растворение, испарение, плавление, реакции разложения), которые протекают с увеличением объема, характеризуются возрастанием энтропии. Процессам, протекающим с уменьшением беспорядка (конденсация, кристаллизация, реакции присоединения, комплексообразования), соответствует уменьшение энтропии.

При выборе оптимальных параметров ведения технологического процесса в случае обратимых реакций, кроме термодинамических закономерностей следует учитывать и особенности процессов, связанных с их кинетикой. Характер влияния температуры на скорость и положение равновесия для обратимых экзо- и эндотермических реакций различен.

Для обратимой экзотермической реакции при малых степенях превращения, когда концентрация исходных продуктов в реакционной массе достаточно велика и мала концентрация продуктов реакции, обратимая реакция протекает, как необратимая. Поэтому с повышением температуры ее скорость возрастает. По мере увеличения концентрации конечных продуктов и снижения концентрации исходных, разность скоростей между прямой и обратной реакциями сокращается и наступает момент, когда они сравниваются и наступает равновесие, при этом технологический процесс прекращается. Чтобы этого не происходило, в непрерывных химико-технологических процессах при стационарном режиме имеет место непрерывная подача свежего сырья и непрерывный вывод продуктов процесса.

В обратимой эндотермической реакции при увеличении температуры скорость прямой реакции возрастает быстрее, чем обратной. В результате этого разность скоростей между прямой и обратной реакциями также возрастает.

На основе вышеизложенного можно обосновать выбор температурного режима химико-технологического процесса для обратимых реакций следующим образом:

1) поскольку в случае обратимой эндотермической реакции повышение температуры положительно влияет на оба критерия оптимизации (на скорость и на смещение равновесия), такую реакцию лучше проводить при постоянной повышенной температуре.

2) неоднозначное влияние температуры на критерии оптимизации обратимой экзотермической реакции требует использования режима понижающейся температуры: начинают процесс при более высокой температуре, а затем ее снижают по линии оптимальных температур. Такой прием применим для периодических процессов. В непрерывных процессах поддерживают постоянную температуру, т. к. нет явления накопления конечных продуктов и невозобновляемого расхода исходного сырья.

Контрольные вопросы

1. Объясните понятие «химико-технологический процесс».

2. Дайте определение понятия «технологический режим». Какие параметры его определяют?

3. Представьте классификацию реакций, определяющих основу ХТП.

4. Напишите уравнение закона действующих масс. Объясните с позиции этого закона влияние концентрации на приемы интенсификации гомогенных процессов.

5. Напишите уравнение Аррениуса. Объясните на основе этого уравнения влияние температуры и энергии активации на скорость химических процессов.

6. Объясните влияние давления на скорость гомогенных процессов. Какие давления по абсолютной величине применяют в химической технологии? Приведите примеры.

7. Приведите классификацию гетерогенных систем. Приведите примеры.

8. Назовите элементарные стадии гетерогенных процессов.

9. Дайте определение лимитирующей стадии процесса. В каких областях может протекать гетерогенная реакция?

10. От каких факторов зависит скорость гетерогенной реакции, протекающей в диффузионной области? Дайте соответствующее уравнение этой зависимости.

11. Что такое движущая сила процесса массопередачи? Как она влияет на скорость гетерогенных процессов? Как можно повысить градиент концентраций?

12. Дайте определение понятия «химическое равновесие». Как его можно нарушить? Принцип Ле-Шателье.

13. Напишите уравнение Гиббса. На его основе объясните принципиальную возможность протекания химической реакции и величину движущей силы процесса.

ТЕМА 6

ПРОМЫШЛЕННЫЙ КАТАЛИЗ

Современную нефтепереработку и нефтехимию в настоящее время без применения катализаторов представить невозможно. Около 90 % промышленных химико-технологических процессов ведут с применением катализаторов в качестве активаторов. В качестве примеров можно привести технологии производства аммиака, азотной и серной кислот, метанола, стирола, бутадиена, в нефтепереработке – это каталитический крекинг и риформинг, гидроочистка и гидрокрекинг, алкилирование изобутана и изомеризация парафиновых углеводородов, производство оксигенатов и т.д.

Каталитические процессы имеют ряд важных преимуществ, по сравнению с некаталитичес-кими. Кроме того, что применение катализаторов резко ускоряет скорости химических реакций, процессы с их применением могут быть организованы как непрерывные, безотходные, менее энергоемкие. Они отличаются высокими технико-экономическими показателями, обеспечивают более высокий выход целевых продуктов.

Применение катализаторов позволяет интенсифицировать химико-технологические процессы, а в ряде случаев осуществлять процессы, которые на практике без применения катализаторов не могут быть реализованы. Особое значение имеет применение катализаторов при обратимых экзотермических процессах, в которых использование катализаторов позволяет существенно снижать температуру процесса и добиться приемлемой степени превращения сырья.

Катализ является наиболее эффективным методом повышения скорости и селективности химических реакций. Понятие катализа включает сложную систему реакций, в результате которых снижаются энергетические, стерические и прочие затруднения на реакционном пути по сравнению с процессом без катализатора. В зависимости от фазового состояния реагентов и катализатора различают гомогенный и гетерогенный катализ. Если реагенты и катализатор находятся в одной жидкой или газовой фазе, то это гомогенный катализ, если – в разных (газ – твердое тело или жидкость – твердое тело), то это гетерогенный катализ. Существует и гомогенно-гетерогенный катализ, когда начавшаяся на гетерогенном катализаторе реакция продолжается затем в объеме другой фазы.

Гетерогенный катализ

Этот вид катализа наиболее распространен в химической технологии. Он имеет ряд достоинств, например, простота разделения с продуктами процесса, высокая термостойкость, сравнительная легкость регенерации.

Каталитические гетерогенные реакции сопровождаются рядом явлений, связанных со свойствами твердых тел, неоднородных по химическому и фазовому составу. Важнейшую роль играют нарушения структуры (дефекты) кристаллической решетки катализаторов. Эти нарушения обуславливают энергетическую неоднородность поверхностных атомов и обеспечение определенной сорбционной способности поверхности катализатора. В целом эффективность применения катализаторов определяется комплексом его химических и физических свойств.

Химические свойства катализаторов . К основным свойствам катализаторов относятся активность (А), селективность (S) и производительность (П).

Активность (кг / м 2 ч ) – общая скорость реакции на катализаторе и может быть рассчитана по формуле

А = G п / F , (6.1)

где G п - количество превращенного реагента за время на единице поверхности F .

Весь цикл работы катализатора можно разделить на три периода:

1) разработка катализатора;

2) период постоянной активности – срок жизни катализатора;

3) дезактивация катализатора.

Под термином «разработка» понимают самопроизвольный рост активности катализатора под воздействием реакционной среды. Период постоянной активности для разных катализаторов может меняться в широких пределах: от нескольких минут до нескольких лет, требования к сроку жизни катализатора определяются стоимостью замены дезактивированного катализатора свежим и возможностью его регенерации. При высокой стоимости замены сокращение числа этих операций дает весьма ощутимый экономический эффект. Явление падения активности катализатора называют старением, утомлением или отравлением.

Старение – это естественный процесс, при котором активность уменьшается по всему слою катализатора. Утомление – это неравномерное падение активности в слое катализатора – опасный процесс, т.к. проявляется задолго до истечения срока жизни катализатора в результате неправильной его эксплуатации.

В числе основных причин дезактивации катализатора можно назвать следующие: зауглероживание, синтеринг, отравление контактными ядами и минерализацию.

Зауглероживание происходит в процессах переработки углеводородного сырья. Катализатор покрывается углеродистыми отложениями (коксом) в форме высоко-конденсированных ароматических структур, которые образуются в результате глубоких химических превращений. Среди подобных процессов можно назвать каталитический крекинг и риформинг, гидрокрекинг, дегидрирование и изомеризацию. Отложения кокса блокируют поверхность катализатора, вследствие чего его активность резко снижается за короткое время, которое иногда составляет 10-30 мин .

Синтеринг (спекание) обычно является результатом окислительной регенерации, во время которой температура катализатора достигает 600 о С и выше, либо следствием высокотемпературного процесса с плохо организованным теплоотводом. Спекание сокращает величину активной поверхности в результате укрупнения кристаллитов металлического или оксидного катализатора и повышает гидравлическое сопротивление аппарата. Поэтому одной из задач в решении этой проблемы является стабилизация структуры компонентов катализатора. Стабилизация осуществляется путем структурного промотирования. Таким промотором, например, при синтезе аммиака служит оксид алюминия Al 2 O 3 , который, внедряясь между кристаллами железа, предотвращает их агломерацию. Аналогичное действие оказывает на никелевый катализатор в процессе гидрирования углеводородов оксид хрома Cr 2 O 3 . Не менее важной является также стабилизация носителя, ибо он обеспечивает металлическому катализатору высокоразвитую поверхность.

Отравление – это частичная, либо полная потеря активности катализатора под действием веществ, называемые контактными ядами. При отравлении наблюдается специфическое действие яда по отношению и к катализатору, и к самой реакции.

Механизм отравления бывает различным. По действию на металлические катализаторы контактные яды можно разделить на три типа:

1) молекулы, содержащие неметаллы N, P, As, O, S, Se , в т.ч. и свободные элементы из этой группы, кроме азота, связывающие металл катализатора за счет неподеленных электронных пар (сероводород, тиофен, арсин, фосфин и др.);

2) отсоединения металлов (ионы ртути, свинца, висмута, олова, кадмия, железа и т.д.) с образованием интерметаллических соединений с участием d –электронов;

3) молекулы, содержащие кратные связи (СО, НСN и др.), с более высокими адсорбционными характеристиками, чем другие вещества реакционной массы.

Защиту катализаторов от контактных ядов ведут несколькими способами:

1) переводом яда в неактивное состояние;

2) очисткой сырья от контактных ядов на стадии его подготовки;

3) применением катализаторов, устойчивых к контактным ядам.

В качестве примера применения первого способа защиты можно привести прием удаления СО , содержащегося в поступающем на синтез аммиака водороде, с помощью самого водорода (СО – контактный яд для железного катализатора):

СО + 3Н 2 CH 4 + H 2 O.

Получаемый метан – инертная примесь к водороду и поэтому не представляет вреда для катализатора.

Примером второго способа защиты катализатора является предварительная гидроочистка бензиновых фракций от серо-, азот- и кислородсодержащих соединений перед направлением их на риформинг на платиновом катализаторе:

RSH + H 2 = RH + H 2 S;

RNH 2 + H 2 = RH + NH 3 ;

ROH + H 2 = RH + H 2 O.

Приведенные выше реакции протекают на алюмо-кобальт-молибденовом катализаторе (АКМ ).

Наиболее интересным и перспективным направлением является разработка каталитических композиций, стойких к ядам.

Указанные выше способы защиты катализаторов от ядов не являются независимыми друг от друга и поэтому могут применяться в одном процессе одновременно.

Еще одной причиной падения активности катализатора является отложение на его поверхности минеральных примесей, содержащихся в сырье. Эти примеси хемосорбируются, изменяя химический состав поверхности катализатора.

Селективность (избирательность) – важнейший показатель качества катализатора, который заключается в преимущественном ускорении целевой реакции в сравнении с побочными. Она измеряется величиной относительной скорости образования целевого продукта:

S = - V A / R = - V A / A . (6.2)

где V А – скорость образования целевого продукта, рассчитанная по реагенту А ;

A=R – общая скорость реакции (активность).

  • 7.Принцип квантовой механики: Дискретность энергии, корпускулярно-волновой дуализм, принципы неопределенности Гейзенберга.
  • 13. Периодический закон д.И. Менделеева. Периодичность в изменении различных свойств элементов (потенциал ионизации, сродство к электрону, атомные радиусы и т.Д.)
  • 14. Сходство и различие химических свойств элементов главных и побочных подгрупп в связи с электронным строением атома.
  • 15. Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи
  • 16. Природа химической связи. Энергетические эффекты в процессе образования химической связи
  • 17. Основные положения метода вс. Обменный и донорно- акцепторный механизмы образования ковалентной связи
  • 18. Валентные возможности атомов элементов в основном и в возбужденном состоянии
  • 20. Насыщаемость ковалентной связи. Понятие валентности.
  • 21. Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
  • 22. Полярность ковалентной связи. Дипольный момент.
  • 23. Достоинства и недостатки метода вс.
  • 24. Метод молекулярных орбиталей. Основные понятия.
  • 26. Ионная связь как предельный случай ковалентной полярной связи. Свойства ионной связи. Основные виды кристаллических решеток для соединений с ионной связью.
  • 27. Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
  • 28. Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
  • 29. Водородная связь.
  • 30. Основные типы кристаллических решеток. Особенности каждого типа.
  • 31. Законы термохимии. Следствия из законов Гесса.
  • 32. Понятие о внутренней энергии системы, энтальпии и энтропии
  • 33. Энергия Гиббса, ее взаимосвязь с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
  • 34. Скорость химических реакций. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
  • 35. Факторы, влияющие на скорость химической реакции
  • 36. Влияние температуры на скорость химических реакций. Правило Вант- Гоффа. Энергия активации. Уравнение Аррениуса.
  • 37. Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
  • 38. Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
  • 39. Обратимые процессы. Химическое равновесие. Константа равновесия.
  • 41. Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.
  • 42. Способы выражения концентрации растворов.
  • 43. Закон Рауля
  • 44. Осмос. Осмотическое давление. Закон Вант-Гоффа.
  • 45. Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
  • 47. Реакция в растворах электролитов, их направленность. Смещение ионных равновесий.
  • 48. Ионное произведение воды. Водородный показатель как химическая характеристика раствора.
  • 49. Гетерогенные равновесия в растворах электролитов. Произведение растворимости
  • 50. Гидролиз солей, его зависимость от температуры, разбавления и природы солей (три типичных случая). Константа гидролиза. Практическое значение в процессах коррозии металла.
  • 51. Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
  • 52. Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нернста.
  • 53. Гальванические элементы. Процессы на электродах. Эдс гальванического элемента.
  • 56. Электролиз растворов и расплавов. Последовательность электродных процессов. Перенапряжение и поляризация.
  • 57. Взаимодействие металлов с кислотами и щелочами.
  • 58. Коррозия металлов в растворах солей.
  • 59. Применение электролиза в промышленности.
  • 61. Методы борьбы с коррозией.
  • 41. Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.

    Раствор – гомогенная система, состоящая из двух или более компонентов (составных частей), относительные количества которых могут изменяться в широких пределах. Всякий раствор состоит из растворенных веществ и растворителя, т.е. среды, в которой эти вещества равномерно распределены в виде молекул или ионов. Обычно растворителем считают тот компонент, который в чистом виде существует в том же агрегатном состоянии, что и полученный раствор. Если же оба компонента до растворения находились в одинаковом агрегатном состоянии, то растворителем считается компонент, находящийся в большем количестве. Раствор, находящийся в равновесии с растворяющимся веществом, называется насыщенным раствором. Ненасыщенные растворы с низким содержанием растворимого вещества – разбавленные; с высоким – концентрированные.

    1. Тепловой эффект растворения. В зависимости от природы веществ растворение сопровождается выделением (KOH) или поглощением (NH4NO3) теплоты. 2. Изменение объема 3. Изменение цвета раствора

    Изменение энтальпии и энтропии при растворении: растворение рассматривается как совокупность физических и химических явлений, выделяя при этом 3 основных процесса: 1. Разрушение химических и межмолекулярных связей в растворяющихся веществах, требующее затрат энергии (энтальпия растет). 2. Химическое взаимодействие растворителя с растворяющимся веществом, выделение энергии (энтальпия уменьшается). 3. Самопроизвольное перемешивание раствора, связанное с диффузией и требующее затраты энергии. При растворении жидких и твердых веществ энтропия системы обычно возрастает, так как растворяемые вещества из более упорядоченного состояния переходят в менее упорядоченное. При растворении газов в жидкостях энтропия уменьшается, так как растворимое вещество переходит из большего объема в меньший.

    42. Способы выражения концентрации растворов.

    Концентрация – количество вещества на единицу массы объема раствора или растворителя.

    Массовая доля – отношение массы растворенного вещества к массе раствора. w=(mb/m)*100%

    Объемная доля – отношение объема вещества к объему всего раствора

    Молярная доля – отношение количества растворенного вещества к сумме количеств всех веществ, составляющих раствор. w=nb/(na+nb) nb=mb/µb

    Молярная концентрация (молярность) – отношение количества растворенного вещества к объему раствора. w=nb/V

    Моляльная концентрация (моляльность) – отношение количества растворенного вещества к массе растворителя. w=nb/ma

    Молярная концентрация эквивалентов – отношение числа эквивалентов растворенного вещества к объему раствора. w=nэ/V

    43. Закон Рауля

    При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. Опыт показывает, что при растворении в жидкости какого-либо вещества давление насыщенного пара этой жидкости понижается. Таким образом, давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре. Разность между этими величинами принято называть понижением давления пара над раствором. Отношение величины этого понижения к давлению насыщенного пара над чистым растворителем называется относительным понижением давления пара над раствором. Закон Рауля: Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества. Явление понижения давления насыщенного пара над раствором вытекает из принципа Ле-Шателье. Изначально жидкость и пар находятся в равновесии. При растворении в жидкости какого-либо вещества концентрация молекул растворителя уменьшается. Система стремится компенсировать это воздействие. Начинается конденсация пара и новое равновесие устанавливается при более низком давлении насыщенного пара.