Как определить какого порядка дифференциальное уравнение. Дифференциальные уравнения для "чайников"

К выполнению контрольной работы №3

Указания

(темы 12-16)

Тема 12. Дифференциальные уравнения 1-го порядка.

Пискунов, гл. VIII, § 1-8, упр. 1-68

Данко, часть II, гл. IV, §1

12.1 Определение дифференциального уравнения первого порядка.

1.Определение . Равенство, связывающее независимую переменную х , функцию у и производные (или дифференциалы) этой функции называются дифференциальным уравнением первого порядка (DY 1) т.е.

F (x,y,y")=0 или y"=f (x,y)

Решить дифференциальное уравнение первого порядка – значит, найти неизвестную функцию y .

2.Общим решением дифференциального уравнения первого порядка называется функция y= j (x,c) , где C - постоянная, которая при подстановке в дифференциальное уравнение первого порядка обращает его в тождество. На плоскости XOY общее решение y=j(x,c) выражает семейство интегральных кривых.

3. Всякое решение y= j (x,С 0) полученное из общего решения при конкретном значении С=С 0 называется частным решением дифференциального уравнения первого порядка.

4. Задача отыскания частного решения дифференциального уравнения первого порядка , удовлетворяющего начальному условию

Или , или

- называется задачей Коши

5. -ДУ 1 с разделяющимися переменными.

6. - ОДУ 1 – однородное дифференциальное уравнение 1-го порядка или , где , - однородные функции одного измерения. Используется подстановка

7. , где . ДУ 1 , приводимое к однородному подстановкой

Где - точка пересечения прямых

Если , то используется подстановка

8. , где - называется уравнением в полных дифференциалах.

Где - полный дифференциал функции

Решить данное уравнение- значит, найти функцию и .

9. - линейное ДУ 1 (ЛДУ 1)

Если , то уравнение неоднородное,

Если , то уравнение однородное.

ЛДУ 1 интегрируются:

1) Методом Бернулли (с помощью подстановки y = иv , где u и v -пока неизвестные функции)

2) Методом Лагранжа, варьируя произвольную постоянную.

10. , где m - число, m¹0 , m¹1 - дифференциальное уравнение Бернулли, решаемое либо с помощью подстановки y= uv , либо методом Лагранжа (см. пункт 9).

12.2. Примеры решения задач.

Задача 1. Найти частное решение ДУ 1 , удовлетворяющему начальному условию .

Решение : Данное уравнение с разделяющимися переменными.

Т.к. , то уравнение примет вид:

Или - после отделения переменных.

Интегрируя обе части последнего уравнения, получим:

Или -общее решение

Используя начальное условие , , находим . Тогда из общего решения выделяется частное решение:

Задача 2.



Решение: Данное уравнение является однородным, так как коэффициенты при dx и dy суть однородные функции одного и того же измерения (второго) относительно переменных x и y . Применяем подстановку y=xt , где t - некоторая функция аргумента x . Если y= xt , то дифференциал dy = d(xt) = tdx+ xdt , и данное уравнение примет вид:

2xxtdt+(x²t²-x²) (tdx+xdt)= 0

Сократив на , будем иметь:

2tdx+(t²-1) (tdx+xdt)=0

2tdx+(t²-1) tdx+x (t²-1)dt=0

t(2+t²-1) dx+x (t²-1)dt=0

t(1+t²)dx= x(1-t²)dt; .

Мы получили уравнение с разделёнными переменными относительно x и t . Интегрируя, находим общее решение этого уравнения:

Потенцируя, находим , или x(1+t²)=Ct . Из введённой подстановки следует, что . Следовательно, или x²+y²= Cy – общее решение данного уравнения.

Задача 3. Найти общее решение уравнения y"-y tg x=2 xsec x.

Решение: Данное уравнение является линейным, так как оно содержит искомую функцию y и её производную y" в первой степени и не содержит их произведений.

Применяем подстановку y= uv , где u и v –некоторые неизвестные функции аргумента x . Если y=uv , то y"= (uv)"= u"v+uv" и данное уравнение примет вид: u"v+uv"-uvtg x= 2x sec x,

v(u"-utg x)+ uv"= 2xsec x. (1)

Так как искомая функция y представлена в виде произведения двух других неизвестных функций, то одну из них можно выбрать произвольно. Выберем функцию u так, чтобы выражение, стоящее в круглых скобках левой части неравенства (1), обращалось в нуль, т.е выберем функцию u так, чтобы имело место равенство

u"-utg x= 0 (2)

При таком выборе функции u уравнение (1) примет вид

uv"= 2x sec x. (3)

Уравнение (2) есть уравнение с разделяющимися переменными относительно u и x. Решим это уравнение:

ln u= -ln cos x , или

(Чтобы равенство (2) имело место, достаточно найти одно какое-либо частное решение, удовлетворяющее этому уравнению. Поэтому для простоты при интегрировании этого уравнения находим то частное решение, которое соответствует значению произвольной постоянной C=0.) Подставив в (3) найденное выражение для u, получим:

secxv"= 2xsecx; v"= 2x; dv= 2xdx. Интегрируя, получаем v=x²+C . Тогда y=secx(x²+C) - общее решение данного уравнения.

12.3.Вопросы для самоконтроля.

1. Какое уравнение называется дифференциальным?

2. Как определяется порядок уравнения? Примеры.

3. Что значит решить ?

4. Какая функция называется решением ?

5. Какое решение называется общим, частным?

6. Как найти частное решение по начальным условиям? Записать план операций, выполняемых при решении на примере y"- 2x= 0 при начальных условиях y (-2)= 4.

7. Сформулировать геометрический смысл общего и частного решения .

Найти функцию f по некоторой заданной зависимости, в которую входят сама функция с аргументами и ее производные. Подобный тип задач актуален в физики, химии, экономики, технике и других областях науки. Подобные зависимости носят название дифференциальных уравнений. К примеру, y" - 2xy = 2 - это дифференциальное уравнение 1-го порядка. Посмотрим, как подобные типы уравнений решаются.

Что это?

Уравнение, выглядящее следующим образом:

  • f(y, y", ..., y(10), y(11), ..., y(k), x) = 0,

носит название обыкновенного дифура и характеризуется как уравнение порядка k, и зависит оно от x и производных y", y"", ... - вплоть до k-й.

Разновидности

В случае, когда функция, которую нужно найти, в дифференциальном уравнении зависима только от одного аргумента, тип дифференциального уравнения именуется обыкновенным. Иными словами, в уравнении функция f и все ее производные зависят только от аргумента x.

При зависимости же искомой функции от нескольких разных аргументов уравнения носят название дифференциальных в частных производных. В общем случае они выглядят:

  • f(x, fx", ..., y, fy"..., z, ..., fz"", ...),

где под выражением fx" понимается производная функции по аргументу x, а fz"" - двойная производная функции по аргументу z, и т. д.

Решение

Несложно догадаться, что именно считается решением диф. уравнения. Это функция, подстановка которой в уравнение дает тождественный результат по обе стороны знака равно, называется решением. Например, уравнение t""+a2t = 0 имеет решение в виде t = 3Cos(ax) - Sin(ax):

1 t"= -3aSin(ax) - aCos(ax) 2 t""= -3a2Cos(ax) + a2Sin(ax) 3 t""+a2t= (-3a2Cos(ax) + a2Sin(ax)) + a2(3Cos(ax) - Sin(ax))

Проведя упрощение уравнения 3 мы выясним, что t""+a2t = 0 при всех значения аргумента x. Однако стоит сразу оговориться. Уравнение t = 3Cos(ax) - Sin(ax) является не единственным решением, а лишь одним из бесконечного множества, которое описывается формулой mCos(ax) + nSin(ax), где m и n - это произвольные числа.

Причина такого соотношения заключается в определение первообразной функции в интегральном исчислении: если Q - первообразная (точнее одна из многих) для функции q , то ∫q(x) dx = Q(x) + C, где С - произвольная константа, которая обнуляется при обратной операции - взятии производной функции Q"(x).


Опустим определение того, что такое решение уравнения k-го порядка. Не трудно представить, чем больше порядок производной, тем больше констант возникает в процессе интегрирования. Также следует уточнить, что описанное выше определение для решения не является полным. Но для математиков XVII века оно было достаточным.

Ниже будут рассмотрены лишь основные типы дифференциальных уравнений первого порядка. Самые базовые и простые. Помимо них существуют и другие диф. уравнения: однородные, в полных дифференциалах и Бернулли. Но решение всех часто связано с методом разделяющихся переменных, который будет рассмотрен ниже.

Разделение переменных как способ решения

F = 0 - представляет собой диф. уравнение порядка 1. При решении данного типа дифференциальных уравнений они легко приводятся к виду y" = f. Так, например, уравнение ey" - 1 - xy = 0 приводится к виду y" = ln(1 + xy). Операция приведения дифференциального уравнения к подобному виду называется его разрешением относительно производной y".

После разрешения уравнения нужно привести его к дифференциальному виду. Это делается путем умножения на dx всех частей равенства. Из y" = f получается y"dx = fdx. С учетом того, что y"dx = dy, получим уравнение в виде:

  • dy = f dx - которое называется дифференциальной формой.

Очевидно, y" = f(x) - наиболее простое дифференциальное уравнение первого порядка. Его решение достигается простым интегрированием. Более сложным видом является q(y)*y" = p(x), в котором q(y) - это функция, зависящая от y, а p(x) - функция зависящая от x. Приведя его к дифференциальному виду, получим:

  • q(y)dy = p(x)dx

Легко понять, почему уравнение называется разделенным: его левая часть содержит только переменную y, а правая - только x. Решается такое уравнение с применением следующей теоремы: если у функции p существует первообразная P, а у q - Q, то интеграл дифура будет Q(y) = P(x) + C.


Решим уравнение z"(x)ctg(z) = 1/x. Приведя это уравнение к дифференциальному виду: ctg(z)dz = dx/x; и взяв интеграл от обеих частей ∫ctg(z)dz = ∫dx/x; получим решение в общем виде: C + ln|sin(z)| = ln|x|. Красоты ради данное уравнение по правилам логарифмов может быть записано в иной форме, если положить C = ln W - получим W|sin(z)| = |x| или, еще проще, WSin(z) = x.

Уравнения вида dy/dx = q(y)p(x)

Разделение переменных можно применить на уравнениях вида y" = q(y)p(x). Нужно только учесть случай, когда q(y) при некотором числе а обращается в нуль. То есть q(a) = 0. В таком случае функция y = a будет решением, т. к. для нее y" = 0, следственно, q(a)p(x) также равно нулю. Для всех остальных значений, где q(y) не равно 0, можно записать дифференциальную форму:

  • p(x) dx = dy / q(y),

интегрируя которую, получают общее решение.


Решим уравнение S" = t2(S-a)(S-b). Очевидно, корнями уравнения являются числа a и b. Поэтому S=a и S=b - решения данного уравнения. Для других значений S имеем дифференциальную форму: dS/[(S-a)(S-b)] = t2dt. Откуда легко получить общий интеграл.

Уравнения вида H(y)W(x)y" + M(y)J(x) = 0

Разрешив данный вид уравнение относительно y" получим: y" = - C(x)D(y) / A(x)B(y). Дифференциальная форма данного уравнения будет такова:

  • W(x)H(y)dy + J(x)M(y)dx = 0

Для решения данного уравнения нужно рассмотреть нулевые случаи. Если а - корень W(x), то x = a - интеграл, т. к. из этого следует, что dx = 0. Аналогично, со случаем, если b - корень M(y). Тогда для области значений x, при которых W и M не обращаются в ноль, можно провести разделение переменных путем деления на выражение W(x)M(y). После чего выражение можно интегрировать.


Множество видов уравнений, к которым на первый взгляд невозможно применить разделение переменных, оказываются таковыми. Например, в тригонометрии это достигается за счет тождественных преобразований. Также часто может быть уместной какая-либо остроумная замена, после которой можно будет использовать метод разделенных переменных. Типы дифференциальных уравнений 1 порядка могут выглядеть самым разным образом.

Линейные уравнения

Не менее важный тип дифференциальных уравнений, решение которых происходит путем подстановки и сведения их к методу разделенных переменных.

  • Q(x)y + P(x)y" = R(x) - представляет собой уравнение, линейное при рассмотрении относительно функции и ее производной. P, Q, R - представляют собой непрерывные функции.

Для случаев, когда P(x) не равном 0, можно привести уравнение к разрешенному относительно y" виду, поделив все части на P(x).

  • y" + h(x)y = j(x), в котором h(x) и j(x) представляют собой соотношения функций Q/P и R/P, соответственно.

Решение для линейных уравнений

Линейное уравнение можно назвать однородным в случае, когда j(x) = 0, то есть h(x)y+ y" = 0. Такое уравнение называется однородным и легко разделяется: y"/y = -h(x). Интегрируя его, получаем: ln|y| = -H(x) + ln(C). Откуда y выражается в виде y = Ce-H(x).

Например, z" = zCos(x). Разделяя переменные и приводя уравнение к дифференциальному виду, после чего интегрируя, получим, что общее решение будет иметь выражение y = CeSin(x).

Неоднородным называется линейное уравнение в его общем виде, то есть j(x) не равно 0. Его решение состоит из нескольких этапов. Сначала следует решить однородное уравнение. То есть приравнять j(x) к нулю. Пусть u - одно из решений соответствующего однородного линейного уравнения. Тогда имеет место быть тождество u" + h(x)u = 0.

Проведем в y" + h(x)y = j(x) замену вида y = uv и получим (uv)" + h(x)uv = j(x) или u"v + uv" + h(x)uv = j(x). Приведя уравнение к виду u(u" + h(x)u) + uv" = j(x) можно заметить, что в первой части u" + h(x)u = 0. Откуда получаем v"(x) = j(x) / u(x). Отсюда вычисляем первообразную ∫v = V+С. Проведя обратную замену, находим y = u(V+C), где u - решение однородного уравнения, а V - первообразная соотношения j / u.

Найдем решение для уравнения y"-2xy = 2, которое относится к типу дифференциальных уравнений первого порядка. Для этого сначала решим однородное уравнение u" - 2xu = 0. Получим u = e2x + C. Для простоты решения положим C = 0, т. к. для решения поставленной задачи нам нужно лишь одно из решений, а не всевозможные варианты.

После чего проведем подстановку y = vu и получим v"(x)u + v(u"(x) - 2u(x)x) = 2. Затем: v"(x)e2x = 2, откуда v"(x) = 2e-2x. Тогда первообразная V(x) = -∫e-2xd(-2x) = - e-2x + С. В итоге общее решение для y" - 2xy = 2 будет y = uv = (-1)(e2x + С) e-2x = - 1 - Ce-2x.


Как определить тип дифференциального уравнения? Для этого следует разрешить его относительно производной и посмотреть, можно воспользоваться методом разделения переменных напрямую или подстановкой.

Дифференциальные уравнения первого порядка, разрешенные относительно производной

Как решать дифференциальные уравнения первого порядка

Пусть мы имеем дифференциальное уравнение первого порядка, разрешенное относительно производной:
.
Разделив это уравнение на , при , мы получим уравнение вида:
,
где .

Далее смотрим, не относятся ли эти уравнения к одному из перечисленных ниже типов. Если нет, то перепишем уравнение в форме дифференциалов. Для этого пишем и умножаем уравнение на . Получаем уравнение в форме дифференциалов:
.

Если это уравнение не является уравнением в полных дифференциалах, то считаем, что в этом уравнении - независимая переменная, а - это функция от . Разделим уравнение на :
.
Далее смотрим, не относится ли это уравнение к одному из, перечисленных ниже типов учитывая, что и поменялись местами.

Если и для этого уравнения не найден тип, то смотрим, нельзя ли упростить уравнение простой подстановкой. Например, если уравнение имеет вид:
,
то замечаем, что . Тогда делаем подстановку . После этого уравнение примет более простой вид:
.

Если и это не помогает, то пытаемся найти интегрирующий множитель.

Уравнения с разделяющимися переменными

;
.
Делим на и интегрируем. При получаем:
.

Уравнения, приводящиеся к уравнениям с разделяющимися переменными

Однородные уравнения

Решаем подстановкой:
,
где - функция от . Тогда
;
.
Разделяем переменные и интегрируем.

Уравнения, приводящиеся к однородным

Вводим переменные и :
;
.
Постоянные и выбираем так, чтобы свободные члены обратились в нуль:
;
.
В результате получаем однородное уравнение в переменных и .

Обобщенные однородные уравнения

Делаем подстановку . Получаем однородное уравнение в переменных и .

Линейные дифференциальные уравнения

Есть три метода решения линейных уравнений.

2) Метод Бернулли.
Ищем решение в виде произведения двух функций и от переменной :
.
;
.
Одну из этих функций мы можем выбрать произвольным образом. Поэтому в качестве выбираем любое не нулевое решение уравнения:
.

3) Метод вариации постоянной (Лагранжа).
Здесь мы сначала решаем однородное уравнение:

Общее решение однородного уравнения имеет вид:
,
где - постоянная. Далее мы заменяем постоянную на функцию , зависящую от переменной :
.
Подставляем в исходное уравнение. В результате получаем уравнение, из которого определяем .

Уравнения Бернулли

Подстановкой уравнение Бернулли приводится к линейному уравнению.

Также это уравнение можно решать методом Бернулли. То есть ищем решение в виде произведения двух функций, зависящих от переменной :
.
Подставляем в исходное уравнение:
;
.
В качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .

Уравнения Риккати

Оно не решается в общем виде. Подстановкой

уравнение Риккати приводится к виду:
,
где - постоянная; ; .
Далее, подстановкой:

оно приводится к виду:
,
где .

Свойства уравнения Риккати и некоторые частные случаи его решения представлены на странице
Дифференциальное уравнение Риккати >>>

Уравнения Якоби

Решается подстановкой:
.

Уравнения в полных дифференциалах

При условии
.
При выполнении этого условия, выражение в левой части равенства является дифференциалом некоторой функции:
.
Тогда
.
Отсюда получаем интеграл дифференциального уравнения:
.

Для нахождения функции , наиболее удобным способом является метод последовательного выделения дифференциала. Для этого используют формулы:
;
;
;
.

Интегрирующий множитель

Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то можно попытаться найти интегрирующий множитель . Интегрирующий множитель - это такая функция, при умножении на которую, дифференциальное уравнение становится уравнением в полных дифференциалах. Дифференциальное уравнение первого порядка имеет бесконечное число интегрирующих множителей. Однако, общих методов для нахождения интегрирующего множителя нет.

Уравнения, не решенные относительно производной y"

Уравнения, допускающие решение относительно производной y"

Сначала нужно попытаться разрешить уравнение относительно производной . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.

Уравнения, допускающие разложение на множители

Если удастся уравнение разложить на множители:
,
то задача сводится к последовательному решению более простых уравнений:
;
;

;
. Полагаем . Тогда
или .
Далее интегрируем уравнение:
;
.
В результате получаем выражение второй переменной через параметр .

Более общие уравнения:
или
также решаются в параметрическом виде. Для этого нужно подобрать такую функцию , чтобы из исходного уравнения можно было выразить или через параметр .
Чтобы выразить вторую переменную через параметр , интегрируем уравнение:
;
.

Уравнения, разрешенные относительно y

Уравнения Клеро

Такое уравнение имеет общее решение

Уравнения Лагранжа

Решение ищем в параметрическом виде. Полагаем , где - параметр.

Уравнения, приводящиеся к уравнению Бернулли


Эти уравнения приводятся к уравнению Бернулли, если искать их решения в параметрическом виде, введя параметр и делая подстановку .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Виды дифференциальных уравнений:

▫ Обыкновенные дифференциальные уравнения - уравнения, в которых одна независимая переменная

▫ Дифференциальные уравнения в частных производных - уравнения, в которых независимых переменных две и более

Виды дифференциальных уравнений представлены в таблице 1.

Таблица 1.

Обыкновенные дифференциальные уравнения первого порядка
Название Вид Способ решения
С разделяющимися переменными P(x,y)dx+Q(x,y)dy=0

если P(x,y) и Q(x,y) разлагаются на множители, зависящие каждый только от одной переменной.

f(x)g(y)dx+(x)q(y)dy=0

1.разделить переменные

2.проинтегрировать

3.привести к стандартному виду

y=(x)+c – общее решение

Однородные P(x,y)dx+ Q(x,y)dy=0

где P(x,y), Q(x,y) – однородные функции одного измерения

y’=

(если в функции заменить x=tx, y=ty и преобразовать вернемся исходному уравнению)

1. замена y=tx, тогда

2. привести к уравнению с разделяющимися переменными и решить (см. выше).

3. вернуться к замене, подставить

4. привести к стандартному виду y=

Линейные y’+P(x)y=Q(x)

(y’ и у’ входят в первых степенях не перемножаясь между собой)

а) линейное однородное

б) линейное неоднородное

в) уравнение Бернулли

y’+P(x)y=Q(x)y’’

1. замена y=uv,тогда y’=u’v+v’u

2. u’v+v’u+ P(x) uv= Q(x)

v(u’+P(x)u)+v’u= Q(x) (*)

3. в уравнении (*) приравнять скобку к нулю

u’+P(x)u=0 – c разделенными переменными

4. значение u подставить в уравнение (*)

v’P(x)=Q(x) - c разделенными переменными

5. вернуться к замене

y=P(x)(F(x)+c) – общее решение

Обыкновенные дифференциальные уравнения второго порядка.
Допускающие понижения порядка y’’=f(x) Решаются двойным интегрированием
Линейные однородные второго порядка с постоянными коэффициентами y’’+py+qy=0

где p, q – заданные числа

Всякое Л.О.У.

Второго порядка имеет систему двух линейно независимых частных решений.

которая называется фундаментальной системой решений.

Общее решение есть линейная комбинация частных решений его фундаментальной системы

1.Составить характеристическое уравнение
2.в зависимости от вида корней, фундаментальная система решений имеет вид:
корни

характеристического уравнения

фундаментальная система частных решений общее решение
действительные
Различные

ВВЕДЕНИЕ

Дифференциальное уравнение -- уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением.

Порядок дифференциального уравнения -- наибольший порядок производных, входящих в него.

Процесс решения дифференциального уравнения называется интегрированием.

Все дифференциальные уравнения можно разделить на линейные и не линейные.

Нелинейное дифференциальное уравнение - дифференциальное уравнение (обыкновенное или с частными производными), в которое по крайней мере одна из производных неизвестной функции (включая и производную нулевого порядка - саму неизвестную функцию) входит нелинейно.

Иногда под Н.Д.У. понимается наиболее общее уравнение определенного вида. Напр., нелинейнымобыкновенным дифференциальным уравнением 1-го порядка наз. уравнение с произвольной функцией при этом линейное обыкновенное дифференциальное уравнение 1-го порядка соответствует частному случаю

Н. д. у. с частными производными 1-го порядка для неизвестной функции z от независимых переменных имеет вид:

где F- произвольная функция своих аргументов;

Виды нелинейных дифференциальных уравнений 1-го порядка

Уравнения с разделенными переменными

Общий интеграл

Общий интеграл

Уравнение в полных дифференциалах

Существует такая функция u(x, y), что

Общий интеграл уравнения в полных дифференциалах u(x, y) = C.

Функция u может быть представлена в виде

Однородное уравнение

где P(x, y), Q(x, y) - однородные функции одной и той же степени

Подстановка y = ux, dy = xdu + udx переводит однородное уравнение в линейное относительно функции u:

Уравнение вида

1. Если прямые и пересекаются в точке (x0; y0), то замена приводит его к однородному уравнению

2. Если прямые и параллельны, то замена приводит к уравнению с разделяющимися переменными

Уравнение Бернулли

Подстановкой сводится к линейному

Уравнение Риккати

Если известно какое-либо из решений, то уравнение сводится к

линейному подстановкой.

Уравнение Лагранжа

Дифференцируя по x и полагая y" = p, приходим к линейному уравнению относительно x как функции p:

Уравнение Клеро

Частный случай уравнения Лагранжа.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Уравнения Риккати

Решить дифференциальное уравнение

y" = y + y2 + 1.

Данное уравнение является простейшим уравнением Риккати с постоянными коэффициентами. Переменные x, y здесь легко разделяются, так что общее решение уравнения определяется в следующем виде:

дифференциальный уравнение решение бернулли


Решить уравнение Риккати

Будем искать частное решение в форме:

Подставляя это в уравнение, находим:

Получаем квадратное уравнение для c:

Мы можем выбрать любое значение c. Например, пусть c = 2. Теперь, когда частное решение известно, сделаем замену:

Снова подставим это в исходное уравнение Риккати:

Как видно, мы получили уравнение Бернулли с параметром m = 2. Сделаем еще одну замену:

Разделим уравнение Бернулли на z2 (полагая, что z ? 0) и запишем его через переменную v:

Последнее уравнение является линейным и легко решается с помощью интегрирующего множителя:


Общее решение линейного уравнения определяется функцией

Теперь мы будем последовательно возвращаться к предыдущим переменным. Так как z = 1/v, то общее решение для z записывается следующим образом:

Следовательно,

Можно переименовать константу: 3C = C1 и записать ответ в виде

где C1 ? произвольное действительное число.

Уравнения Бернули

Данное уравнение является уравнением Бернулли с дробным параметром m = 1/2. Его можно свести к линейному дифференциальному уравнению с помощью замены

Производная новой функции z(x) будет равна

Разделим исходное уравнение Бернулли на

Аналогично другим примерам на этой веб-странице, корень y = 0 также является тривиальным решением дифференциального уравнения. Поэтому можно записать:

Заменяя y на z, находим:

Итак, мы имеем линейное уравнение для функции z(x). Интегрирующий множитель здесь будет равен

Выберем в качестве интегрирующего множителя функцию u(x) = x. Можно проверить, что после умножения на u(x) левая часть уравнения будет представлять собой производную произведения z(x)u(x):

Тогда общее решение линейного дифференциального уравнения будет определяться выражением:


Возвращаясь к исходной функции y(x), записываем решение в неявной форме:

Итак, полный ответ имеет вид:

Уравнения с разделяющимися переменными

Найти все решения дифференциального уравнения

Преобразуем уравнение следующим образом:

Очевидно, что деление на ey не приводит к потере решения, поскольку ey > 0. После интегрирования получаем

Данный ответ можно выразить в явном виде:


В последнем выражении предполагается, что константа C > 0, чтобы удовлетворить области определения логарифмической функции.

Найти частное решение уравнения, при

Перепишем уравнение в следующем виде:

Разделим обе части на 1 + ex:

Поскольку 1 + ex > 0, то при делении мы не потеряли никаких решений. Интегрируем полученное уравнение:

Теперь найдем константу C из начального условия y(0) = 0.

Следовательно, окончательный ответ имеет вид:

Уравнение Клеро

Полагая y" = p, его можно записать в виде

Продифференцировав по переменной x, находим:

Заменим dy на pdx:

Приравнивая первый множитель к нулю, получаем:

Теперь подставим это во второе уравнение:

В результате получаем общее решение заданного уравнения Клеро. Графически, это решение представляется в виде однопараметрического семейства прямых. Приравнивая нулю второй сомножитель, находим еще одно решение:

Это уравнение соответствует особому решению дифференциального уравнения и в параметрической форме записывается как

Исключая p из системы, получаем следующее уравнение интегральной кривой:

С геометрической точки зрения, парабола

является огибающей семейства прямых, определяемых общим решением.

Найти общее и особое решения дифференциального уравнения

Введем параметр y" = p:

Дифференцируя обе части уравнения по переменной x, получаем:

Поскольку dy = pdx, то можно записать:

Рассмотрим случай dp = 0. Тогда p = C. Подставляя это в уравнение, находим общее решение:

Графически это решение соответствует однопараметрическому семейству прямых линий.

Второй случай описывается уравнением

Найдем соответствующее параметрическое выражение для y:

Параметр p можно исключить из формул для x и y. Возводя последние уравнения в квадрат и складывая их, получаем:

Полученное выражение является уравнением окружности радиусом 1, расположенным в начале координат. Таким образом, особое решение представляется единичной окружностью в плоскости xy, которая является огибающей для семейства прямых линий.

ЛИТЕРАТУРА

1. Н.С. Пискунов "Дифференциальное и интегральное исчисление", том второй, издательство "Наука", Москва 1985

2. В. Ф. Зайцев, А. Д. Полянин. Справочник по обыкновенным дифференциальным уравнениям. М.: Физматлит, 2001.

3. К.Н. Лунгу, В.П. Норин и др. "Сборник задач по высшей математике", второй курс, Москва: Айрис-пресс, 2007

4. Э. Камке. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.

5. Источники информации в интернете.