Уравнение прямой второго порядка. Общее уравнение кривых второго порядка

Как показано выше, уравнения одой и той же прямой можнозаписать по крайней мере в трех видах: общие уравнения прямой, параметрические уравнения прямой и канонические уравнения прямой. Рассмотрим вопрос о переходе от уравнений прямой одного вида к уравнениям прямой в другом виде.

Во-первых заметим, что если заданы уравнения прямой в параметрической форме, то тем самым заданы точка, через которую проходит прямая и направляющий вектор прямой. Поэтому не составляет труда записать уравнения прямой в канонической форме.

Пример .

Даны уравнения прямой в параметрической форме

Решение .

Прямая проходит через точку
и имеет направляющий вектор
. Следовательно, канонические уравнения прямой имеют вид

.

Аналогично решается задача о переходе от канонических уравнений прямой к параметрическим уравнениям прямой.

Переход от канонических уравнений прямой к общим уравнениям прямой рассматривается ниже на примере.

Пример .

Даны канонические уравнения прямой

.

Записать общие уравнения прямой.

Решение.

Запишем канонические уравнения прямой в виде системы двух уравнений

.

Избавляясь от знаменателей путем умножения обеих частей первого уравнения на 6, а второго уравнения на 4, получим систему

.

.

Полученная система уравнений и есть общие уравнения прямой.

Рассмотрим переход от общих уравнений прямой к параметрическим и каноническим уравнениям прямой. Чтобы записать канонические или параметрические уравнения прямой, надо знать точку, через которую проходит прямая, и направляющий вектор прямой. Если определить координаты двух точек
и
, лежащих на прямой, то в качестве направляющего вектора м можно взять вектор
. Координаты двух точек, лежащих на прямой, можно получить как решения системы уравнений, определяющих общие уравнения прямой. В качестве точки, через которую проходит прямая, можно взять любую из точек
и
. Проиллюстрируем сказанное выше на примере.

Пример .

Даны общие уравнения прямой

.

Решение .

Найдем координаты двух точек, лежащих на прямой, как решения этой системы уравнений. Полагая
, получим систему уравнений

.

Решая эту систему, находим
. Следовательно, точка
лежит на прямой. Полагая
, получаем систему уравнений

,

решая которую находим
. Следовательно, прямая проходит через точку
. Тогда в качестве направляющего вектора можно взять вектор

.

Итак, прямая проходит через точку
и имеет направляющий вектор
. Следовательно, параметрические уравнения прямой имеют вид

.

Тогда канонические уравнения прямой запишутся в виде

.

Другой способ нахождения направляющего вектора прямой по общим уравнениям прямой основан на том, что в этом случае заданы уравнения плоскостей, а значит и нормали к этим плоскостям.

Пусть общие уравнения прямой имеют вид

и- нормали к первой и второй плоскости, соответственно. Тогда вектор
можно взять в качестве направляющего вектора прямой. В самом деле, прямая, будучи линией пересечения этих плоскостей, одновременно перпендикулярна векторами. Следовательно, она коллинеарна вектору
и значит этот вектор можно взять в качестве направляющего вектора прямой. Рассмотрим пример.

Пример .

Даны общие уравнения прямой

.

Записать параметрические и канонические уравнения прямой.

Решение .

Прямая является линией пересечения плоскостей с нормалями
и
. Берем в качестве направляющего вектора прямой вектор

Найдем точку, лежащую на прямой. Найдем точку, лежащую на прямой. Пусть
. Тогда получаем систему

.

Решая систему, находим
.Следовательно, точка
лежит на прямой. Тогда параметрические уравнения прямой можно записать в виде

.

Канонические уравнения прямой имеют вид

.

Наконец, к каноническим уравнениям можно перейти исключив в одном из уравнений одну из переменных, а затем другую переменную. Рассмотрим этот метод на примере.

Пример .

Даны общие уравнения прямой

.

Записать канонические уравнения прямой.

Решение.

Исключим из второго уравнения переменную у, прибавив к нему первое, умноженное на четыре. Получим

.

.

Теперь исключим из второго уравнения переменную , прибавив к нему первое уравнение, умноженное на два. Получим

.

.

Отсюда получаем каноническое уравнение прямой

.

.

.

Установим на плоскости прямоугольную систему координат и рассмотрим общее уравнение второй степени

в котором
.

Множество всех точек плоскости, координаты которых удовлетворяют уравнению (8.4.1), называется кривой (линией ) второго порядка .

Для всякой кривой второго порядка существует прямоугольная система координат, называемая канонической, в которой уравнение этой кривой имеет один из следующих видов:

1)
(эллипс);

2)
(мнимый эллипс);

3)
(пара мнимых пересекающихся прямых);

4)
(гипербола);

5)
(пара пересекающихся прямых);

6)
(парабола);

7)
(пара параллельных прямых);

8)
(пара мнимых параллельных прямых);

9)
(пара совпадающих прямых).

Уравнения 1)–9) называются каноническими уравнениями кривых второго порядка.

Решение задачи приведения уравнения кривой второго порядка к каноническому виду включает нахождение канонического уравнения кривой и канонической системы координат. Приведение к каноническому виду позволяет вычислить параметры кривой и определить ее расположение относительно исходной системы координат. Переход от исходной прямоугольной системы координат
к канонической
осуществляется путем поворота осей исходной системы координат вокруг точкиО на некоторый угол  и последующего параллельного переноса системы координат.

Инвариантами кривой второго порядка (8.4.1) называются такие функции от коэффициентов ее уравнения, значения которых не меняются при переходе от одной прямоугольной системы координат к другой такой же системе.

Для кривой второго порядка (8.4.1) сумма коэффициентов при квадратах координат

,

определитель, составленный из коэффициентов при старших членах

и определитель третьего порядка

являются инвариантами.

Значение инвариантов s, ,  можно использовать для определения типа и составления канонического уравнения кривой второго порядка (табл. 8.1).

Таблица 8.1

Классификация кривых второго порядка, основанная на инвариантах

Рассмотрим подробнее эллипс, гиперболу и параболу.

Эллипсом (рис. 8.1) называется геометрическое место точек плоскости, для которых сумма расстояний до двух фиксированных точек
этой плоскости, называемыхфокусами эллипса , есть величина постоянная (большая, чем расстояние между фокусами). При этом не исключается совпадение фокусов эллипса. Если фокусы совпадают, то эллипс представляет собой окружность.

Полусумму расстояний от точки эллипса до его фокусов обозначают через а , половину расстояний между фокусами – с . Если прямоугольная система координат на плоскости выбрана так, что фокусы эллипса располагаются на оси О x симметрично относительно начала координат, то в этой системе координат эллипс задается уравнением

, (8.4.2)

называемым каноническим уравнением эллипса , где
.

Рис. 8.1

При указанном выборе прямоугольной системы координат эллипс симметричен относительно осей координат и начала координат. Оси симметрии эллипса называют его осями , а центрего симметрии – центром эллипса . Вместе с тем часто осями эллипса называют числа 2a и 2b , а числа a и b большой и малой полуосью соответственно.

Точки пересечения эллипса с его осями называются вершинами эллипса . Вершины эллипса имеют координаты (а , 0), (–а , 0), (0, b ), (0, –b ).

Эксцентриситетом эллипса называется число

. (8.4.3)

Поскольку 0  c < a , эксцентриситет эллипса 0   < 1, причем у окружности  = 0. Перепишем равенство (8.4.3) в виде

.

Отсюда видно, что эксцентриситет характеризует форму эллипса: чем ближе  к нулю, тем больше эллипс похож на окружность; при увеличении  эллипс становится более вытянутым.

Пусть
– произвольная точка эллипса,
и
– расстояния от точкиМ до фокусов F 1 и F 2 соответственно. Числа r 1 и r 2 называются фокальными радиусами точки М эллипса и вычисляются по формулам

Директрисами отличного от окружности эллипса с каноническим уравнением (8.4.2) называются две прямые

.

Директрисы эллипса расположены вне эллипса (рис. 8.1).

Отношение фокального радиуса точки M эллипса к расстоянию этого эллипса (фокус и директриса считаются соответствующими, если они расположены по одну сторону от центра эллипса).

Гиперболой (рис. 8.2) называется геометрическое место точек плоскости, для которых модуль разности расстояний до двух фиксированных точек иэтой плоскости, называемыхфокусами гиперболы , есть величина постоянная (не равная нулю и меньшая, чем расстояние между фокусами).

Пусть расстояние между фокусами равно 2с , а указанный модуль разности расстояний равен 2а . Выберем прямоугольную систему координат так же, как и для эллипса. В этой системе координат гипербола задается уравнением

, (8.4.4)

называемым каноническим уравнением гиперболы , где
.

Рис. 8.2

При данном выборе прямоугольной системы координат оси координат являются осями симметрии гиперболы, а начало координат – ее центром симметрии. Оси симметрии гиперболы называют ее осями , а центр симметрии – центром гиперболы . Прямоугольник со сторонами 2a и 2b , расположенный, как показано на рис. 8.2, называется основным прямоугольником гиперболы . Числа 2a и 2b – оси гиперболы, а числа a и b – ее полуоси . Прямые, являющиеся продолжением диагоналей основного прямоугольника, образуют асимптоты гиперболы

.

Точки пересечения гиперболы с осью Ox называются вершинами гиперболы . Вершины гиперболы имеют координаты (а , 0), (–а , 0).

Эксцентриситетом гиперболы называется число

. (8.4.5)

Поскольку с > a , эксцентриситет гиперболы  > 1. Перепишем равенство (8.4.5) в виде

.

Отсюда видно, что эксцентриситет характеризует форму основного прямоугольника и, следовательно, форму самой гиперболы: чем меньше , больше вытягивается основной прямоугольник, а вслед за ним и сама гипербола вдоль оси Ox .

Пусть
– произвольная точка гиперболы,
и
– расстояния от точкиМ до фокусов F 1 и F 2 соответственно. Числа r 1 и r 2 называются фокальными радиусами точки М гиперболы и вычисляются по формулам

Директрисами гиперболы с каноническим уравнением (8.4.4) называются две прямые

.

Директрисы гиперболы пересекают основной прямоугольник и проходят между центром и соответствующей вершиной гиперболы (рис. 8.2).

Отношение фокального радиусаточки M гиперболы к расстоянию от этой точки до отвечающей фокусудиректрисы равно эксцентриситету этой гиперболы (фокус и директриса считаются соответствующими, если они расположены по одну сторону от центра гиперболы).

Параболой (рис. 8.3) называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки F (фокуса параболы ) этой плоскости равно расстоянию до некоторой фиксированной прямой (директрисы параболы ), также расположенной в рассматриваемой плоскости.

Выберем начало О прямоугольной системы координат в середине отрезка [FD ], представляющего собой перпендикуляр, опущенный из фокуса F на директрису (предполагается, что фокус не принадлежит директрисе), а оси Ox и Oy направим так, как показано на рис. 8.3. Пусть длина отрезка [FD ] равна p . Тогда в выбранной системе координат
иканоническое уравнение параболы имеет вид

. (8.4.6)

Величина p называется параметром параболы .

Парабола имеет ось симметрии, которая называется осью параболы . Точка пересечения параболы с ее осью называется вершиной параболы . Если парабола задана своим каноническим уравнением (8.4.6), то осью параболы является ось Ox . Очевидно, вершиной параболы является начало координат.

Пример 1. Точка А = (2, –1) принадлежит эллипсу, точка F = (1, 0) является его фокусом, соответствующая F директриса задана уравнением
. Составьте уравнение этого эллипса.

Решение. Будем считать систему координат прямоугольной. Тогда расстояние от точкиА до директрисы
в соответствии с соотношением (8.1.8), в котором


, равно

.

Расстояние от точкиА до фокуса F равно

,

что позволяет определить эксцентриситет эллипса

.

Пусть M = (x , y ) – произвольная точка эллипса. Тогда расстояние
от точкиМ до директрисы
по формуле (8.1.8) равно

а расстояние от точкиМ до фокуса F равно

.

Поскольку для любой точки эллипса отношение есть величина постоянная, равная эксцентриситету эллипса, отсюда имеем

,

Пример 2. Кривая задана уравнением

в прямоугольной системе координат. Найдите каноническую систему координат и каноническое уравнение этой кривой. Определите тип кривой.

Решение. Квадратичная форма
имеет матрицу

.

Ее характеристический многочлен

имеет корни  1 = 4 и  2 = 9. Следовательно, в ортонормированном базисе из собственных векторов матрицы А рассматриваемая квадратичная форма имеет канонический вид

.

Перейдем к построению матрицы ортогонального преобразования переменных, приводящего рассматриваемую квадратичную форму к указанному каноническому виду. Для этого будем строить фундаментальные системы решений однородных систем уравнений
и ортонормировать их.

При
эта система имеет вид

Ее общим решением является
. Здесь одна свободная переменная. Поэтому фундаментальная система решений состоит из одного вектора, например, из вектора
. Нормируя его, получим вектор

.

При
также построим вектор

.

Векторы иуже ортогональны, так как относятся к различным собственным значениям симметричной матрицыА . Они составляют канонический ортонормированный базис данной квадратичной формы. Из столбцов их координат строится искомая ортогональная матрица (матрица поворота)

.

Проверим правильность нахождения матрицы Р по формуле
, где
– матрица квадратичной формы в базисе
:

Матрица Р найдена верно.

Выполним преобразование переменных

и запишем уравнение данной кривой в новой прямоугольной системе координат со старым центром и направляющими векторами
:

где
.

Получили каноническое уравнение эллипса

.

В силу того, что результирующее преобразование прямоугольных координат определяется формулами

,

,

каноническая система координат
имеет начало
и направляющие векторы
.

Пример 3. Применяя теорию инвариантов, определите тип и составьте каноническое уравнение кривой

Решение. Поскольку

,

в соответствии с табл. 8.1 заключаем, что это – гипербола.

Так как s = 0, характеристический многочлен матрицы квадратичной формы

Его корни
и
позволяют записать каноническое уравнение кривой

где С находится из условия

,

.

Искомое каноническое уравнение кривой

.

В задачах этого параграфа координаты x , y предполагаются прямоугольными.

8.4.1. Для эллипсов
и
найдите:

а) полуоси;

б) фокусы;

в) эксцентриситет;

г) уравнения директрис.

8.4.2. Составьте уравнения эллипса, зная его фокус
, соответствующую директрисуx = 8 и эксцентриситет . Найдите второй фокус и вторую директрису эллипса.

8.4.3. Составьте уравнение эллипса, фокусы которого имеют координаты (1, 0) и (0, 1), а большая ось равна двум.

8.4.4. Дана гипербола
. Найдите:

а) полуоси a и b ;

б) фокусы;

в) эксцентриситет;

г) уравнения асимптот;

д) уравнения директрис.

8.4.5. Дана гипербола
. Найдите:

а) полуоси а и b ;

б) фокусы;

в) эксцентриситет;

г) уравнения асимптот;

д) уравнения директрис.

8.4.6. Точка
принадлежит гиперболе, фокус которой
, а соответствующая директриса задана уравнением
. Составьте уравнение этой гиперболы.

8.4.7. Составьте уравнение параболы, если даны ее фокус
и директриса
.

8.4.8. Даны вершина параболы
и уравнение директрисы
. Составьте уравнение этой параболы.

8.4.9. Составьте уравнение параболы, фокус которой находится в точке

и директриса задана уравнением
.

8.4.10. Составьте уравнение кривой второго порядка, зная ее эксцентриситет
, фокус
и соответствующую директрису
.

8.4.11. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

г)
;

8.4.12.

является эллипсом. Найдите длины полуосей и эксцентриситет этого эллипса, координаты центра и фокусов, составьте уравнения осей и директрис.

8.4.13. Докажите, что кривая второго порядка, заданная уравнением

является гиперболой. Найдите длины полуосей и эксцентриситет этой гиперболы, координаты центра и фокусов, составьте уравнения осей, директрис и асимптот.

8.4.14. Докажите, что кривая второго порядка, заданная уравнением

,

является параболой. Найдите параметр этой параболы, координаты вершин и фокуса, составьте уравнения оси и директрисы.

8.4.15. Каждое из следующих уравнений приведите к каноническому виду. Изобразите на чертеже соответствующую кривую второго порядка относительно исходной прямоугольной системы координат:

8.4.16. Применяя теорию инвариантов, определите тип и составьте каноническое уравнение кривой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Кривая второго порядка — геометрическое место точек на плоскости, прямоугольные координаты

которых удовлетворяют уравнению вида:

в котором, по крайней мере один из коэффициентов a 11 , a 12 , a 22 не равен нулю.

Инварианты кривых второго порядка.

Вид кривой зависим от 4 инвариантов , приведенных ниже:

Инварианты относительно поворота и сдвига системы координат:

Инвариант относительно поворота системы координат (полуинвариант ):

Для изучения кривых второго порядка рассматриваем произведение А*С.

Общее уравнение кривой второго порядка выглядит так:

Ax 2 +2Bxy+Cy 2 +2Dx+2Ey+F=0

Если А*С > 0 эллиптического типа . Любое эллиптическое

уравнение - это уравнение или обычного эллипса, или же вырожденного эллипса (точки), или мнимого

эллипса (в таком случае уравнение не определяет на плоскости ни одного геометрического образа);

Если А*С < 0 , то уравнение принимает вид уравнения гиперболического типа . Любое гиперболическое

уравнение выражает или простую гиперболу, или вырожденную гиперболу (две пересекающиеся прямые);

Если А*С = 0 , то линия второго порядка не будет центральной. Уравнения такого типа называют

уравнениями параболического типа и выражают на плоскости или простую параболу , или 2 параллельных

(либо совпадающих) прямых, или не выражают на плоскости ни одного геометрического образа;

Если А*С ≠ 0 , кривая второго порядка будет

Общее уравнение кривой второго порядка на плоскости имеет вид:

Ax 2 + 2Bxy + Cy 2 + 2Dx + 2Ey + F = 0, (39)

где A 2 + B 2 + C 2 0, (A , B , C , D , E , F ) R . Оно определяет все возможные конические сечения произвольным образом расположенные на плоскости.

Из коэффициентов уравнения (39) составим два определителя:

Называется дискриминантом уравнения (39), а - дискриминантом старших членов уравнения. При 0 уравнение (39) определяет: > 0 - эллипс; < 0 - гиперболу; = 0 - параболу. В случае = 0 кривые вырождаются в точку или прямые линии.

От общего уравнения (39) можно перейти к каноническому уравнению, если исключить линейные и перекрестный члены путем перехода в новую систему координат, совпадающую с осями симметрии фигуры. Заменим в (39) x на x + a и y на y + b , где a , b некоторые константы . Выпишем полученные коэффициенты при х и y и приравняем их к 0

(Aa + Bb + D )x = 0, (Cb + Ba + E )y = 0. (41)

В результате уравнение (39) примет вид:

A (x ) 2 + 2B (x )(y ) + C (y ) 2 + F = 0, (42)

где коэффициенты А , B , C не изменились, а F = / . Решение системы уравнений (41) определит координаты центра симметрии фигуры:

Если B = 0, то a = -D /A , b = -E /C и исключать линейные члены в (39) удобно методом приведения к полному квадрату:

Ax 2 + 2Dx = A (x 2 + 2xD /A + (D /A ) 2 - (D /A ) 2) = A (x + D /A ) 2 - D 2 /A .

В уравнении (42) совершим поворот координат на угол a (38). Выпишем полученный коэффициент при перекрестном члене x y и приравняем его к 0

xy = 0. (44)

Условие (44) определяет необходимый угол поворота осей координат до их совпадения с осями симметрии фигуры и принимает вид:

Уравнение (42) принимает форму:

A + X 2 + C + Y 2 + F = 0 (46)

от которой легко перейти к каноническому уравнению кривой:

Коэффициенты A + , C + , при условии (45), можно представить как корни вспомогательного квадратного уравнения:

t 2 - (A + C )t + = 0. (48)

В результате определены положение и направление осей симметрии фигуры, ее полуоси:

и она может быть построена геометрически.

В случае = 0 имеем параболу. Если её ось симметрии параллельна оси Ох , то уравнение сводится к виду:

если нет, то к виду:

где выражения в скобках, приравненные к 0, определяют линии новых осей координат: , .

Решение типичных задач

Пример 15. Привести уравнение 2x 2 + 3y 2 - 4x + 6y - 7 = 0 к каноническому виду и построить кривую.

Решение. B = 0, = -72 0, = 6 > 0 эллипс.

Выполним приведение к полному квадрату:

2(x - 1) 2 + 3(y + 1) 2 - 12 = 0.


Координаты центра симметрии (1; -1), линейное преобразование X = x - 1, Y = y + 1 приводит уравнение к каноническому виду .

Пример 16. Привести уравнение 2xy = a 2 к каноническому виду и построить кривую.

Решение. B = 1, = a 2 0, = -1 < 0 гипербола .

Центр системы координат находится в центре симметрии кривой, т.к. в уравнении нет линейных членов. Совершим поворот осей на угол a. По формуле (45) имеем tg2a = B /(A - C ) = , т.е. a = 45°. Коэффициенты канонического уравнения (46) A + , C + определяются уравнением (48): t 2 = 1 или t 1,2 = 1 A + = 1, C + = -1, т.е.
X 2 - Y 2 = a 2 или . Таким образом, уравнение 2ху = а 2 описывает гиперболу с центром симметрии в (0; 0). Оси симметрии располагаются по биссектрисам координатных углов, асимптотами служат оси координат, полуоси гиперболы равны а .y - 9 =0;

9x 2 + y 2 - 18x + 2y + 1 = 0;

2x 2 + 4х + y - 2 = 0;

3x 2 - 6х - y + 2 = 0;

- x 2 + 4y 2 - 8x - 9y + 16 = 0;

4x 2 + 8х - y - 5 = 0;

9x 2 - y 2 + 18x + 2y - 1 = 0;

9x 2 - 4y 2 + 36x + 16y - 16 = 0.