Лептоны и нейтринные осцилляции. Обнаружение нового типа осцилляций нейтрино

Нейтрино – точно так же, как заряженные лептоны (электрон, мюон, тау), кварки верхнего типа (верхний, очарованный, истинный) и нижнего типа (нижний, странный, прелестный) – бывают трёх типов. Но делить на типы их можно разными способами. При этом, из-за квантовой природы нашего мира в один момент времени можно использовать только один из них. В этой статье я объясню, почему так происходит, и как из этого факта следует такой интересный и важный с научной точки зрения факт, как нейтринные осцилляции .

Вы, возможно, считаете, что у каждой частицы есть определённая масса – к примеру, энергия массы электронов равна (E = mc 2) 0,000511 ГэВ – и с одной из возможных точек зрения три типа нейтрино не являются исключениями. Мы можем классифицировать три нейтрино по их массам (которые пока точно неизвестны), и называть их, от наиболее лёгких к наиболее тяжёлым, нейтрино-1, нейтрино-2 и нейтрино-3. Мы назовём такое деление массовой классификацией, а такие типы нейтрино – массовыми типами.


Рис. 1

Другой способ классифицировать нейтрино – по их связи с заряженными лептонами (электроном, мюоном и тау). Это упомянуто в статье о том, как выглядели бы частицы, если бы поле Хиггса было нулевым. Лучший способ это понять – сфокусироваться на том, как на нейтрино влияет слабое ядерное взаимодействие, что отражается в их взаимодействиях с частицей W. Частица W очень тяжёлая, и если вы её произведёте, она может распадаться (рис. 1) на один из трёх заряженных антилептонов и один из трёх нейтрино. Если W распадается на антитау, то появится тау-нейтрино. Сходным образом, если W распадётся на антимюон, появится мюонное нейтрино. (Что критично для создании нейтринного луча, пион распадается при помощи слабых взаимодействий, и из положительно заряженных пионов получаются антимюон и мюонное нейтрино). А если W распадается на позитрон, появится электронное нейтрино. Назовём это слабой классификацией, а эти нейтрино – нейтрино слабого типа, поскольку их определяет слабое взаимодействие.

Ну и в чём же тут проблема? Мы постоянно используем разные классификации в применении к людям. Мы говорим о том, что люди бывают молодыми, взрослыми и пожилыми; они бывают высокими, среднего роста и низкими. Но людей можно по желанию разделять и далее, например, на девять категорий: молодые и высокие, молодые и среднего роста, взрослые и низкие, пожилые и низкие, и так далее. Но квантовая механика запрещает нам делать то же самое с классификациями нейтрино. Не существует нейтрино, являющихся одновременно мюонными нейтрино и нейтрино-1; не бывает тау-нейтрино-3. Если я сообщу вам массу нейтрино (и, следовательно, принадлежит ли он к группе нейтрино-1, 2 или 3), я просто не смогу сказать вам, является ли он электронным, мюонным или тау-нейтрино. Нейтрино определённого массового типа является смесью, или «суперпозицией» трёх нейтрино слабого типа. Каждый нейтрино массового типа – нейтрино-1, нейтрино-2 и нейтрино-3 – точная, но отличная от других смесь электронного, мюонного и тау-нейтрино.

Верно и обратное. Если я увижу, как пион распадается на антимюон и нейтрино, я сразу же узнаю, что получившийся нейтрино будет мюонным нейтрино – но я не смогу узнать его массу, поскольку он будет представлять собой смесь из нейтрино-1, нейтрино-2 и нейтрино-3. Электронное нейтрино и тау-нейтрино – это тоже точные, но отличающиеся смеси трёх нейтрино определённых масс.

Связь между этими массовыми и слабыми типами больше похожа (но не точно соответствует) связи между классификациями американских шоссе, как идущих «с севера на юг» и с «запада на восток» (правительство США делит их таким способом, назначая нечётные числа шоссе С/Ю и даже простым дорогам З/В), и делением их на дороги, идущие с «северо-востока на юго-запад» и с «юго-востока на северо-запад». У использования любой классификации есть свои преимущества: классификация С/Ю – З/В подходит, если вы концентрируетесь на широте и долготе, а СВ/ЮЗ – ЮВ/СЗ будет более удобной вблизи побережья, поскольку оно идёт с юго-запада на северо-восток. Но обе классификации одновременно использовать нельзя. Дорога, идущая на северо-восток, частично является северной, и частично восточной; нельзя сказать, что она либо такая, либо сякая. А северная дорога является смесью из северо-восточной и северо-западной. Так и с нейтрино: нейтрино массового типа – смесь нейтрино слабого типа, а нейтрино слабого типа – смесь массовых. (Аналогия перестанет работать, если вы решите использовать усовершенствованную классификацию дорог С/Ю – СВ/ЮЗ – В/З – ЮВ/СЗ; для нейтрино такого варианта не существует).

Невозможность классифицировать нейтрино, приписав их к определённому массовому типу и к определённому слабому типу – это пример принципа неопределённости , похожего на странность, запрещающую одновременно знать точное положение и точную скорость частицы. Если вы точно знаете одно из этих свойств, у вас нет никакого представления о другом. Или вы можете узнать что-то об обоих свойствах, но не всё. Квантовая механика точно говорит вам, как сбалансировать ваше знание и незнание. Кстати, эти проблемы не относятся только к нейтрино. Они связаны и с другими частицами, но особенно важны в контексте поведения нейтрино.

Несколько десятилетий назад всё было проще. Тогда считалось, что у нейтрино нет массы, поэтому достаточно было использовать слабую классификацию. Если посмотреть в старые работы или в старые книжки для обычных людей, вы увидите только такие названия, как электронное нейтрино, мюонное нейтрино и тау-нейтрино. Однако после открытий 1990-х годов этого уже недостаточно.

И теперь начинается самое интересное. Допустим, у вас есть нейтрино высокой энергии электронного типа, то есть определённая смесь нейтрино-1, нейтрино-2 и нейтрино-3. Нейтрино движется в пространстве, но три его различных массовых типа двигаются с немного отличающимися скоростями, весьма близкими к скорости света. Почему? Потому, что скорость объекта зависит от его энергии и массы, а у трёх массовых типов три разных массы. Разница в их скоростях крайне мала для любого нейтрино, которое мы сможем измерить – она никогда не наблюдалась – но её влияние удивительно сильно!

Разница скоростей нейтрино – немного формул

Скорость частицы v в теории относительности Эйнштейна можно записать через массу частицы m и энергию E (это полная энергия, т.е. энергия движения плюс энергия массы E=mc 2), и скорость света с, как:

Если у частицы очень большая скорость и её полная энергия Е гораздо больше энергии массы mc 2 , тогда

Recall the raised 1/2 means “take-the-square-root”. If the particle has very high velocity and its total energy E is much, much larger than its mass-energy mc2, then

Где точки напоминают о том, что эта формула – не точное, но хорошее приближение к большому Е. Иначе говоря, скорость частицы, двигающейся почти со скоростью света, отличается от скорости света на величину, равную половине квадрата отношения энергии массы частицы к её полной энергии. Из этой формулы видно, что если у двух нейтрино есть разные массы m 1 и m 2 , но одинаковая большая энергия Е, то их скорости отличаются очень мало.

Посмотрим, что это значит. Все измеренные нейтрино от взорвавшейся в 1987 году сверхновой прибыли на Землю в 10-секундном промежутке. Допустим, электронный нейтрино был испущен сверхновой с энергией в 10 МэВ. Этот нейтрино был смесью из нейтрино-1, нейтрино-2 и нейтрино-3, каждый из которых двигался с немного отличной скоростью! Заметили бы мы такое? Массы нейтрино нам точно неизвестны, но, допустим, что у нейтрино-2 энергия массы равна 0,01 эВ, а у нейтрино-1 энергия массы равна 0,001 эВ. Тогда две их скорости, учитывая, что их энергии равны, будут отличаться от скорости света и друг от друга менее, чем на одну часть от ста тысяч триллионов:

(погрешность всех уравнений не превышает 1%). Такая разница в скорости означает, что части нейтрино-2 и нейтрино-1 изначального электронного нейтрино прибыли бы на Землю с разницей в миллисекунду – такую разницу по множеству технических причин засечь невозможно.

А теперь от интересного мы переходим к реально странным вещам.

Эта крохотная разница скоростей заставляет точную смесь из нейтрино-1, нейтрино-2 и нейтрино-3, составляющую электронное нейтрино, постепенно меняться при движении в пространстве. Это значит, что то электронное нейтрино, с которого мы начали, со временем перестаёт быть собой и соответствовать одной конкретной смеси из нейтрино-1, нейтрино-2 и нейтрино-3. Различные массы нейтрино трёх массовых типов превращают начальное электронное нейтрино в процессе перемещения в смесь из электронного нейтрино, мюонного нейтрино и тау-нейтрино. Проценты смеси зависят от разницы скоростей, и, следовательно, от энергии начального нейтрино, а также от различия масс (точнее, от различия квадратов масс) нейтрино.



Рис. 2

Сначала эффект увеличивается. Но, что интересно, как показано на рис. 2, этот эффект не просто постоянно растёт. Он растёт, а потом снова уменьшается, а потом снова растёт, снова уменьшается, снова и снова, в процессе движения нейтрино. Это называется нейтринными осцилляциями. Как именно они происходят, зависит от того, какие у нейтрино массы и каким образом там смешаны массовые нейтрино и слабые нейтрино.

Эффект осцилляций можно измерить благодаря тому, что электронное нейтрино при столкновении с ядром (а именно так нейтрино и можно засечь) может превратиться в электрон, но не в мюон и не тау, в то время, как мюонное электрино может превратиться в мюон, но не в электрон или тау. Так что, если мы начали с луча мюонного нейтрино, и после перемещения на некое расстояние некоторые нейтрино столкнулись с ядрами и превратились в электроны, это значит, что в луче происходят осцилляции, и мюонные нейтрино превращаются в электронные нейтрино.

Один весьма важный эффект усложняет и обогащает эту историю. Поскольку обычная материя состоит из электронов, но не из мюонов и тау, электронные нейтрино взаимодействуют с ней не так, как мюонные или тау. Эти взаимодействия, происходящие посредством слабого взаимодействия, крайне малы. Но если нейтрино пройдёт через большую толщу материи (допустим, через ощутимую долю Земли или Солнца), эти небольшие эффекты смогут накопиться и сильно повлиять на осцилляции. К счастью, о слабом ядерном взаимодействии нам известно достаточно для того, чтобы детально предсказать эти эффекты, и просчитать всю цепочку задом наперёд, от измерений в эксперименте до выяснения свойств нейтрино.

Всё это делается с использованием квантовой механики. Если для вас это не интуитивно, расслабьтесь; для меня это тоже не интуитивно. Всю имеющуюся интуицию я получил из уравнений.

Оказывается, что тщательное измерение нейтринных осцилляций – наиболее быстрый способ изучения свойств нейтрино! За эту работу уже давали Нобелевскую премию. Вся эта история появилась из классического взаимодействия эксперимента и теории, протянувшегося с 1960-х годов до сегодняшнего дня. Я упомяну наиболее важные из проведённых измерений.

Для начала, мы можем изучать электронные нейтрино, производимые в центре Солнца, в его хорошо изученной ядерной топке. Эти нейтрино путешествуют сквозь Солнце и через пустое пространство к Земле. Обнаружено, что когда они прибывают на Землю, они с одинаковой вероятностью могут принадлежать к типу мюонных или тау, как и к типу электронных нейтрино. Это само по себе служит доказательством нейтринной осцилляции, а точное распределение даёт нам подробную информацию о нейтрино.

Также у нас есть мюонные нейтрино, возникающие при распаде пионов, возникающих в космических лучах. Космические лучи - это частицы с высокой энергией, прибывающие из космоса, и сталкивающиеся с атомными ядрами в верхних слоях атмосферы. В получившихся в результате каскадах частиц часто встречаются пионы, многие из которых распадаются на мюонные нейтрино и антимюоны, или на мюонные антинейтрино и мюоны. Некоторые из этих нейтрино (и антинейтрино) мы засекаем в наших детекторах, и можем измерить, какая их часть принадлежит к электронным нейтрино (и антинейтрино) в зависимости от того, какую толщу Земли они прошли перед тем, как попасть в детектор. Это опять-таки даёт нам важную информацию о поведении нейтрино.

Эти «солнечные» и «атмосферные» нейтрино научили нас многому о свойствах нейтрино за последние двадцать лет (а первый намёк на нечто интересное случился почти 50 лет назад). И к этим естественным источникам энергии прибавляются различные исследования, проведённые при помощи лучей нейтрино, таких, как те, что используются в эксперименте OPERA , а также при помощи нейтрино из обычных ядерных реакторов. Каждое из измерений по большей части согласуется со стандартной интерпретацией солнечных и атмосферных нейтрино, и позволяет проводить более точные измерения смесей массовых типов и слабых типов нейтрино и различий в квадратах масс нейтрино массового типа.

Как и следовало ожидать, в экспериментах присутствуют небольшие расхождения с теоретическими ожиданиями, но ни одно из них не было подтверждено, а большинство, если не все, являются лишь статистическими случайностями или проблемами на экспериментальном уровне. Пока что ни одно противоречие с пониманием нейтрино и их поведения не было подтверждено в нескольких экспериментах. С другой стороны, вся эта картина довольно нова и достаточно плохо проверена, поэтому вполне возможно, хотя и маловероятно, что у неё могут существовать совершенно другие интерпретации. И действительно, уже предлагались довольно серьёзные альтернативы. Так что уточнение деталей свойств нейтрино – это активно развивающаяся область исследований, в которой по большей части возникает согласие, но кое-какие вопросы всё ещё остаются открытыми – включая полное и бесповоротное определение масс нейтрино.

Министерство образования республики Беларусь

Гродненский университет им. Я.Купалы

Кафедра теоретической физики

Курсовая работа

Тема: Нейтринные осцилляции.

Выполнил: студент 5-го курса Шаркунова В.А.

Проверил: Сенько Анна Николаевна

В работе показано, что для объяснения данных экспериментов, можно сделать предположение о существовании нейтринных осцилляциях, и значит нейтринных масс. Рассмотрена теория нейтринных осцилляций. Нейтрино рассматривается в рамках лево-правой модели. В двухфлейворном приближении получены возможные иерархии масс нейтрино.

Аннотация...................................................................................................... 2

Введение......................................................................................................... 4

1. Осцилляции нейтрино............................................................................. 7

1.1. Вакуумные нейтринные осцилляции........................................................................................................................... 7

1.2. Осцилляции нейтрино в сплошной среде................................................................................................................. 11

2. Указание на не нулевую нейтринную массу..................................... 15

2.1. Проблема солнечных нейтрино.................................................................................................................................. 15

2.2. Атмосферные нейтрино................................................................................................................................................. 19

2.3. Результаты эксперимента LSND (Los Alamos liquid scintillation neutrino detector)....................................... 21

2.4. Горячая тёмная материя Вселенной......................................................................................................................... 22

2.5. Двойной β-распад........................................................................................................................................................... 23

3. Некоторые эксперименты по регистрации нейтрино....................... 26

3.1. Детекторы солнечных нейтрино................................................................................................................................ 26

3.2. Эксперимент Homestake............................................................................................................................................... 28

3.3. Эксперименты Kamiokande и Super-Kamiokande.................................................................................................. 29

3.4. Эксперименты Gallex и SAGE...................................................................................................................................... 31

4. Иерархия масс майорановских нейтрино в лево-правой модели.. 32

Заключение.................................................................................................. 35

Литература................................................................................................... 36

Нейтрино – элементарная частица, рождающаяся в некоторых ядерных реакциях. Во Вселенной существует несколько мощных источников нейтрино.

1) Солнце и другие звезды в устойчивом состоянии.

2) Суперновые, которые теряют часть своей энергии за несколько секунд в форме нейтрино.

3) Некоторые массивные астрофизические объекты (квазары, активные ядра галактик…), которые являются источниками нейтрино высокой энергии, составляющих важную часть космических лучей.

Существуют атмосферные нейтрино – это нейтрино рождающиеся при столкновении космических лучей с ядрами земной атмосферы, а так же нейтрино рождающиеся при бета распаде ядер в атомных реакторах и земные нейтрино. Мы погружены в реликтовые нейтрино (около 500 штук в кубическом сантиметре), появившихся во время Большого Взрыва 15 миллиардов лет назад.

Рисунок 1. Поток нейтрино от различных источников.

Существует три вида, или флейвора, нейтрино: электронное, мюонное и тауонное. До сих пор не ясно отличается ли нейтрино от антинейтрино. Существуют теории в которых они различны. В этом случае говорят о дираковских нейтрино. В других теориях нейтрино и антинейтрино не различимы, и тогда нейтрино называются майорановскими.

Независимо от того являются нейтрино майорновскими или дираковскими, мы не знаем, имеют ли нейтрино массу и магнитный момент. Эксперимент пока обеспечивает верхние пределы. Однако существуют указания на то, что нейтрино имеют массы. Для объяснения некоторых экспериментов выдвигается гипотеза о нейтринных осцилляциях. Осцилляции нейтрино – взаимопревращение различных типов нейтрино. В настоящее время имеется три экспериментальных факта в поддержку нейтринных осцилляций.

1) Поток солнечных

оказывается сильно подавленным по сравнению с предсказаниями существующих моделей Солнца.

2) Теоретическое отношение потоков атмосферных мюонных и электронных нейтрино к измеренным экспериментально, находится в противоречии с результатами экспериментов.

3) Изучение распадов движущихся

мезонов LSND коллаборацией показывает наличие как так и .

Для существования нейтринных осцилляций необходимо (но не достаточно), чтобы нейтрино имели отличные от нуля массы.

В минимальной стандартной модели не существует правостороннего нейтрино, и значит лептонное число не сохраняется. Таим образом нейтрино не обладает ни майорановской ни дираковской массами. Любое доказательство для ненулевой массы или угла смешивания является доказательством вне рамок стандартной модели. Кроме того, массы и углы смешивания являются фундаментальными параметрами, которые будут объяснены в окончательной теории фермионных масс. Лево-правая модель предсказывает существование нейтринной массы и приводит к смешиванию между состояниями с определенной массой как внутри, так и между нейтринными поколениями.

1. Осцилляции нейтрино.

Осцилляции нейтрино могут быть представлены аналогично более известному примеру прецессии спина в поперечном магнитном поле. Предположим, имеются частицы спина ½, чьи спины поляризованы вдоль z (или “вверх”). Луч проходит через область, где создано магнитное поле в направлении y. Спин “вверх” не является основным состоянием в этом магнитном поле. Из-за этого луч подвергается колебаниям (прецесси). Если рассмотреть луч после прохождения некоторого расстояния, можно обнаружить, что луч является суперпозицией спинов “вверх” и “вниз”.

Можно переформулировать последние утверждение иначе. Мы начинали с луча со спином “вверх”, но после прохождения некоторого расстояния, вероятность найти спин “вверх” в луче меньше единицы. Другими словами, существует истощение спина “вверх”. Осцилляции нейтрино представляют истощение, например солнечных

таким же образом, т.е. постулируется, что состояния, которые созданы или наблюдаются, не являются основными состояниями распространения.

1.1. Вакуумные нейтринные осцилляции.

Электронное нейтрино

- состояние, возникающие в распаде, где так же рождается позитрон . Мюонное нейтрино - состояние, полученное в распаде вместе с мюоном . Будем называть и состояния флэйвора. Из этого определения не очевидно, что эти состояния флэйвора – физические частицы. Вообще любые из них могут быть суперпозицией из различных физических частиц. Другими словами, состояние полученное в распаде должно иметь некоторую вероятность существования частицы и некоторую вероятность существования частицы . Будем называть эти состояния и , как частицы или физические состояния. Введём следующие обозначения: (1.1)

Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени .

Идея нейтринных осцилляций была впервые выдвинута советско-итальянским физиком Б. М. Понтекорво в 1957 году .

Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино .

Осцилляции в вакууме

Предполагается, что такие превращения - следствие наличия у нейтрино массы или (для случая превращений нейтрино↔антинейтрино) несохранения лептонного заряда при высоких энергиях .

См. также

  • Матрица Понтекорво - Маки - Накагавы - Сакаты
  • Осцилляции нейтральных каонов
  • Осцилляции B-мезонов

Примечания

Литература

  • Ю. Г. Куденко , «Исследование нейтринных осцилляций в ускорительных экспериментах с длинной базой» , Успехи физических наук , вып. 6, 2011.
  • С. М. Биленький , «Массы, смешивание и осцилляции нейтрино» , Успехи физических наук 173 1171-1186 (2003)

Wikimedia Foundation . 2010 .

Смотреть что такое "Нейтринные осцилляции" в других словарях:

    Нейтринные осцилляции превращения нейтрино (электронного, мюонного или таонного) в нейтрино другого сорта (поколения), или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы… … Википедия

    - (v), лёгкая (возможно, безмассовая) электрически нейтральная ч ца со спином 1/2 (в ед. ћ), участвующая только в слабом и гравитац. вз ствиях. Н. принадлежит к классу лептонов, а по статистич. св вам явл. фермионом. Известны три типа Н.:… … Физическая энциклопедия

15 июня 2011 г. международный эксперимент Т2К (Tokai-to-Kamioka) объявил о детектировании 6 событий, являющихся кандидатами в электронные нейтрино. Были проанализированы данные, накопленные во время проведения эксперимента с пучком мюонных нейтрино с января 2010 г. до землетрясения в Японии 11 марта 2011 г. Впервые получено прямое экспериментальное указание на осцилляции мюонных нейтрино в электронные нейтрино.

Немного о свойствах нейтрино

В природе существует три типа нейтрино - электронное (ν e), мюонное (ν μ) и тау-нейтрино (ν τ), которые, являясь нейтральными лептонами, связаны с соответствующими заряженными лептонами электроном, мюоном и тау-лептоном. У каждого нейтрино есть своя античастица - антинейтрино. Каждый тип нейтрино имеет свое лептонное число, то же, что и его напарник - заряженный лептон. Слабое взаимодействие, в котором участвуют нейтрино, сохраняет лептонные числа. Например, мюон при распаде обязан испустить мюонное нейтрино. В стандартной Модели нейтрино являются безмассовыми частицами, которые в процессе распространения со скоростью света не могут изменять свой аромат (тип), т. е. не смешиваются, так как законы сохранения лептонного числа постулированы для каждого из трех семейств лептонов по отдельности.

Действительность оказалась сложнее. Существует интересный квантомеханический эффект: осцилляции частиц. Частицы могут переходить друг в друга на лету, если это не запрещено законами сохранения. В свободном полете «живет» не частица определенного сорта, а «массовое состояние» - комбинация двух частиц, переходящих друг в друга. Допустим, при рождении массовое состояние представлено частицей одного сорта, тогда через некоторое время оно превращается в другой сорт, потом обратно, и т. п. Период превращений обратно пропорционален разности квадратов масс частиц (т. е. хотя бы у одной из них должна быть ненулевая масса). Переход может быть не полным, т. е. появляется лишь квантомеханическая примесь второй частицы, при этом величина примеси определяется параметром, который называется «угол смешивания» частиц. Гипотеза об осцилляциях нейтрино была впервые выдвинута Б. М. Понтекорво в 1957 г.

Оказалось, нейтрино осциллируют! Значит они имеют малую ненулевую массу, смешиваются, и ароматы нейтрино (лептонные числа) не сохраняются. Нейтрино, участвующие в слабых взаимодействиях, являются линейной комбинацией собственных массовых состояний ν 1 , ν 2 , ν 3 , которым соответствуют массы m 1 , m 2 , m 3 . Физика нейтринных осцилляций описывается унитарной матрицей, которая в общем виде параметризируется через три угла смешивания θ 12 , θ 23 и θ 13 , одну СР нечетную фазу δ и две Майорановские фазы.

Нейтрино участвуют в слабых взаимодействиях как ν e , ν μ , ν τ , т. е. имея определенный аромат. А чтобы увидеть эффект из смешивания, надо работать с массовыми состояниями, которые могут проявить себя в процессе распространения нейтрино как свободных частиц через вакуум. Нейтрино, которое было чисто мюонным в момент рождения (t = 0), через временной интервал (t > 0) уже не является таковым, приобретая некую примесь электронного нейтрино.

Измерение осцилляций может быть выполнено двумя способами. Один метод заключается в измерении известного начального потока нейтрино и наблюдении уменьшения этого потока по сравнению с предсказанной величиной в отсутствие осцилляций.

Этот метод называется экспериментом на «исчезновение». Другой метод заключается в детектировании нейтрино аромата β в пучке нейтрино, который изначально состоит только из нейтрино аромата α. Этот метод называется экспериментом на «появление».

Эксперименты с солнечными, атмосферными, реакторными и ускорительными нейтрино однозначно установили, что нейтрино смешиваются. Из солнечных и реакторных экспериментов получена величина θ 12 ~ 34°, а из экспериментов с атмосферными и ускорительными нейтрино следует, что θ 23 ~ 45°. Для угла смешивания θ 13 в эксперименте CHOOZ было получено ограничение сверху около 12°. В отличие от кварков, нейтрино обладают большими углами смешивания, что явилось неожиданным результатом. Чтобы получить полную картину нейтринных осцилляций, необходимо получить три кусочка недостающей информации: 1) измерить величину угла θ 13 ; 2) определить СР нечетную фазу δ; 3) выяснить, какая иерархия масс (m 3 > m 2 или m 2 > m 3) реализуется в природе. Поиск осцилляций ν μ → ν e и измерение угла θ 13 в настоящее время являются одной из ключевых проблем нейтринной физики. Это связано как с пониманием природы осцилляций, так и с поиском СР нарушения в лептоном секторе.

Эксперимент Т2К

Главной целью первого этапа эксперимента Т2К являются поиск осцилляций ν μ → ν e и измерение угла θ 13 . Следующий этап (в случае ненулевой и не малой величины θ 13) - это измерение с пучком мюонных антинейтрино, поиск СР нарушения и измерение фазы δ. В коллаборацию Т2К входят более 500 ученых и инженеров, представляющих 59 институтов из 12 стран мира. От России в эксперименте участвует ИЯИ РАН.

Основными элементами установки Т2К являются нейтринный канал, комплекс ближних нейтринных детекторов на расстоянии 280 м от мишени и дальний детектор нейтрино.

СуперКамиоканде, расположенный под горой Икенояма. От места своего рождения до регистрации в СуперКамиоканде нейтрино пролетают в толще Земли расстояние 295 км, как показано на рисунке 1.

В эксперименте используется чистый (примесь электронных нейтрино в максимуме спектра составляет менее 0,5%) пучок мюонных нейтрино, энергия которых имеет небольшой разброс и настроена на первый осцилляционный максимум. Такой пучок получается за счет использования кинематики распада пионов, рожденных при взаимодействии протонов с мишенью, на мюоны и мюонные нейтрино и выбора направления нейтрино по отношению к направлению протонного пучка. Приближенное выражение для переходов мюонных нейтрино в электронные выглядит следующим образом.

Для угла между протонным пучком и направлением на дальний детектор 2,5 градуса максимум интенсивности спектра нейтрино соответствует энергии 600 МэВ, что позволяет настроиться на максимальную чувствительность к осцилляциям нейтрино, соответствующую максиму вероятности в приведенной выше формуле для выбранной пролетной базы 295 км и параметров Dm 2 13 = 2,4·10 3 эВ 2 , sin 2 2q 23 ~ 1,0, полученных из «атмосферных» осцилляций.

Ближний нейтринный детектор (ND280) используется для измерений исходного (до осцилляций) нейтринного пучка, для постоянного контроля за его параметрами и для измерений нейтринных сечений в области энергий около 1 ГэВ. ND280 состоит из двух детекторов. Один детектор, расположенный на оси пучка, контролирует интенсивность, профиль и направление пучка с точностью лучше 1 мрад. Второй детектор (off-axis) - это комплексная установка, состоящая из нескольких детекторов (один из которых - детектор пробега мюонов (SMRD) - был разработан и создан в ИЯИ РАН), позволяющих контролировать направление нейтринного пучка, измерять энергию нейтрино с точностью около 15 МэВ и измерять сечения взаимодействия нейтрино через заряженные и нейтральные токи. Основные элементы off-axis детектора, расположенного под углом 2,5 градуса, показаны на рисунке 2. Для измерения импульса и заряда частиц используется магнитное поле, создаваемое магнитом, который ранее использовался в ЦЕРНе в экспериментах UA1 и NOMAD.

Дальний детектор СуперКамиоканде представляет собой гигантский бак диаметром 39 м и высотой 42 м, заполненный чистой водой. По стенкам, дну и крыше детектора с шагом 70 см расположено около 11000 больших фотоэлектронных умножителей, которые регистрируют черенковское излучение от заряженных частиц, появляющихся в результате взаимодействия нейтрино с веществом детектора. Детектор регистрирует нейтрино в диапазоне от энергий 4,5 МэВ до 1 ТэВ. Размер, направление и форма черенковского конуса используются для идентификации события: однокольцевое мюоноподобное, однокольцевое электроноподобное или многокольцевое событие. Мюоноподобное кольцо от черенковского излучения мюона имеет форму с резкими краями, а кольцо от электрона имеет размытую форму. Временная синхронизация с протонным пучком осуществляется через навигационную систему GPS с точностью около 50 наносекунд. Такая точность позволяет наблюдать временную структуру зарегистрированных нейтринных событий и ее соответствие временной структуре протонного пучка, что позволяет подавить фон от атмосферных нейтрино до пренебрежимо малого уровня. Нейтринные события регистрировались в интервале ±500 мксек по отношении к ожидаемому времени появления нейтрино от J-PARC.

Создание нейтринного канала и ближнего нейтринного детектора было начато в апреле 2004 г. и завершено в 2009 г. Набор статистики был начат в январе 2010 г. За это время в активном объеме детектора 22,5 кт было зарегистрировано 88 нейтринных событий, энергия которых была более 30 МэВ и полностью измерялась в детекторе. Все эти события находились во временном интервале от –2 до 10 мксек по отношению к временному триггеру, синхронизованному со структурой протонного пучка, в то время, как уровень фона от атмосферных нейтрино в этом временном интервале составил всего 0,003 события. После дополнительного анализа 6 событий были идентифицированы как электроноподобные события, появившиеся в результате взаимодействия в детекторе электронных нейтрино с энергией от 100 до 1250 МэВ через заряженный ток (т. е. с рождением электрона и исчезновением нейтрино). Одно из таких событий показано на рисунке 3.

Ожидаемое число таких событий, предполагая отсутствие осцилляций ν μ → ν e (для θ 13 = 0), составило величину 1,5±0,3. Основной вклад в фоновые события дают электронные нейтрино, содержащиеся в исходном пучке мюонных нейтрино, а также вклад от нейтральных пионов, возникающих в результате взаимодействия мюооных нейтрино через нейтральные токи. Распределение по энергии зарегистрированных электроноподобных событий показано на рисунке 4.

Вероятность того, что 6 событий появились в результате флуктуации фоновых событий, а не стали результатом осцилляций, составляет 0,7%. Таким образом, с вероятностью 99,3% этот результат может быть интерпретирован как указание на осцилляции ν μ → ν e . Центральная величина для sin 2 2θ 13 составляет 0,11 для нормальной иерархии масс нейтрино (m 3 > m 2) и 0,14 для инверсной иерархии (m 3 < m 2) в случае δ = 0.

Т2К набрал до 11 марта 2011 г., когда произошло землетрясение и цунами в Японии, примерно 2% от статистики, которую планируется набрать за все время эксперимента. К счастью, землетрясение не нанесло фатальных повреждений ускорительному комплексу J-PARC, нейтринному каналу и детектору ND280. Сейчас идут интенсивные восстановительные работы, и одновременно проводится модернизация некоторых элементов, чтобы поднять интенсивность протонного пучка. Мы ожидаем, что набор статистики возобновится в конце 2011 г., и к окончанию первой фазы эксперимента число нейтринных событий в СуперКамиоканде увеличится примерно в 50 раз, что позволит существенно повысить точность уже известных осцилляционных параметров и измерить угол θ 13 с хорошей точностью. Нейтринный эксперимент MINOS (Фермилаб, США) представил 24 июня новый результат по поиску осцилляций ν μ → ν e . Было обнаружено 62 события, интерпретируемые как электронные нейтрино. Несмотря на большее число событий, точность результата ниже, так как ожидаемый фон составляет 50 событий. Этот результат находится в согласии с нашим результатом, хотя достигнутая в MINOS чувствительность позволяет только сделать заключение, что величина θ 13 = 0 исключена на уровне 89% CL. В ближайшее время также должны появиться первые результаты экспериментов DoubLeChooz (Франция), Reno (Корея), Daya Bay (Китай), которые измеряют угол θ 13 , используя реакторные антинейтрино.

Вторая фаза эксперимента Т2К ставит своей целью поиск СР нарушения в лептонном секторе. Для этого будут проведены эксперименты с пучком мюонных антинейтрино и выполнены измерения осцилляций мюонных антинейтрино в электронные антинейтрино. Сравнение вероятностей таких осцилляций для нейтрино и антинейтрино позволит получить первую информацию о нарушении СР инвариантности в лептонном секторе.

Заключение

Результат, полученный в эксперименте Т2К, безусловно, является знаменательным событием в нейтринной физике. От результатов Т2К в значительной степени зависит дальнейшее развитие исследований с ускорительными и реакторными нейтрино. Вместе с результатами других экспериментов Т2К существенно улучшает наше понимание свойств нейтрино, и вполне вероятно, что мы стоим на пороге нового, исключительного интересного этапа в нейтринной физике. Эти исследования могут пролить свет на проблему объединения кварков и лептонов, а также на роль нейтрино в возникновении барионной асимметрии Вселенной, т. е. явиться ключом к разгадке одной из тайн природы о преобладании вещества над антивеществом во Вселенной. Как это уже случалось не раз в нейтринной физике, возможно появление новых и, весьма вероятно, совершенно неожиданных результатов.

Литература:
1) T2K CoLLaboration, arXiv: 1106.2822
2) T2K CoLLaboration, arXiv:

Сначала небольшая цитата с Википедии: "Нейтринные осцилляции - превращения нейтрино (электронного, мюонного или таонного) в нейтрино другого сорта (поколения), или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта, в зависимости от прошедшего с момента создания частицы собственного времени. Идея нейтринных осцилляций была впервые выдвинута советско-итальянским физиком Б. М. Понтекорво в 1957 году. Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино ."

Нейтринные осцилляции были придуманы, поскольку число регистрируемых на Земле солнечных электронных нейтрино в два-три раза меньше предсказанного солнечными моделями. Для этого сочинили сказку, что электронное нейтрино, мюонное нейтрино и так называемое тау-нейтрино имеют практически одинаковую величину массы покоя. И это вранье прошло незамеченным. Никто ведь не измерил массу покоя мюонного нейтрино. Даже величину массы покоя электронного нейтрино, в гигантских количествах излучаемого солнцем и получаемого на атомных реакторах пока не удается измерить, что уж говорить о нестабильном мюонном нейтрино и тем более о его еще более короткоживущем первом возбужденном состоянии, называемом (исторически) тау-нейтрино.

Масса покоя элементарных частиц определяется их набором квантовых чисел, как - физика пока не в состоянии дать ответ на этот вопрос. Но из опыта нам известно, что каждая элементарная частица (за исключением выдуманных) обладает своей собственной величиной массы покоя. Например, электрон и мюон обладают отличающимися наборами квантовых чисел и их массы покоя резко отличаются. Тогда из чего следует, что электронное и мюонное нейтрино обладают одинаковой величиной массы покоя - ответ не из чего и не следует. Это разные элементарные частицы и у них будет разная величина массы покоя. И у первого возбужденного состояния мюонного нейтрино - тоже. Потому, что кроме первого возбужденного состояния есть еще второе, третье, четвертое, (о которых стандартной модели ничего не известно) и все они отличаются своей собственной величиной внутренней энергии, а значит и массой покоя. А как только мы установили, что каждое из типов нейтрино обладает своей собственной величиной массы покоя, то мы тем самым узнали, что закон сохранения энергии запрещает их самопроизвольные взаимные превращения. Разрешенными остаются только те реакции элементарных частиц, которые протекают в соответствии с законами природы - например, распад мюонного нейтрино. Но последний еще больше увеличивает поток солнечных электронных нейтрино, проходящих через Землю.

3 Теперь посмотрим на нейтринные превращения с точки зрения классической электродинамики.

Элементарная частица отличается от своей античастицы тем, что у нее напряженности электрических и магнитных полей имеют противоположный знак. Т.е. для того, чтобы превратить, например, электрон в позитрон требуется развернуть в обратную сторону все его электромагнитные поля. Понятное дело, что такое чудодейственное превращение начисто отвергает законы классической электродинамики. Ясно, что такие превращения с электроном не могут происходить в природе и поэтому они никогда не наблюдались. Тогда почему они могут происходить с электронным нейтрино или с мюонным нейтрино. Разве для электрона существуют свои законы природы, а для электронного нейтрино свои. Когда некоторые "теории" или "модели" требуют каждой элементарной частице свои собственные законы природы - то это говорит о том, что данные теоретические построения не соответствуют природе.

Теперь о чудодейственном превращении одного типа нейтрино в другой. У каждого типа нейтрино (как электронного, так и мюонного) свой собственный набор квантовых чисел и, следовательно, их электромагнитные поля будут отличаться. При превращении одного типа нейтрино в другой произойдет самопроизвольная смена их электромагнитных полей, что противоречит законам классической электродинамики. Электромагнитные поля не могу возникать из ничего и исчезать в никуда, что относится и к электромагнитным полям элементарных частиц. Электромагнитные поля могут трансформироваться в соответствии с законами классической электродинамики.

То, что стандартная модель не замечает ни структуры нейтрино, ни ее электромагнитных полей, говорит не об их отсутствии, а о недостатках самой стандартной модели. Если физика установила наличие магнитных полей у нейтральных барионов, то из чего следует что их не должно быть у нейтральных лептонов - законы природы должны быть едины для всех элементарных частиц .

Как видим, классическая электродинамика тоже не допускает самопроизвольные превращения нейтрино .

Подводя итог можно сказать следующее: надо было уменьшить поток приходящих к Земле солнечных нейтрино в два-три раза - вот и придумали сказочку о нейтринных осцилляциях.

Владимир Горунович
25.01.2013

4 Нобелевская премия по физике 2015 (за нейтринные осцилляции) - еще одна ошибка Нобелевского комитета по физике

Я не хотел этого писать, но и не могу спокойно молчать когда нам в очередной раз пытаются вдуть математическую СКАЗКУ, выдавая ее за якобы сделанное экспериментаторами открытие в физике. - Невозможно открыть то, чего нет, но можно сделать вид, что открыл . Два года назад была присуждена Нобелевская премия за сказочный "бозон Хиггса", не имеющий никакого отношения к гравитации, теперь сказка о нейтринных осцилляциях. Если посмотреть решения Нобелевского комитета по физике за последние 10 лет (2006 - 2015), в свете последних достижений Новой физики - четыре решения из десяти были ОШИБОЧНЫМИ (кроме указанных, 2008 год "За открытие источника нарушения симметрии, которое позволило предсказать существование в природе по меньшей мере трёх поколений кварков" - вот только кварки в природе не найдены и их дробный электрический заряд тоже; 2011 год "За открытие ускоренного расширения Вселенной посредством наблюдения дальних сверхновых" - вот только наличие самого расширения Вселенной физикой не доказано: красное смещение, на основании которого была выдвинута данная гипотеза, допускает и иные - альтернативные толкования). Итог деятельности Нобелевского комитета по физике за последние 5 лет еще более удручающий: 60% решений Нобелевского комитета по физике оказались ошибочными, при этом Нобелевский комитет откровенно игнорировал предупреждения Новой физики, за что и поплатился ошибочными решениями. Т.е. теперешний состав Нобелевского комитета по физике принимает правильные решения с вероятностью 40-60%. Может чиновников из Нобелевского комитета по физике такой показатель успешность их работы устраивает, но он совершенно не устраивает физику, от имени которой они принимают решения - физика им таких полномочий не давала. Что-то не так в деятельности теперешнего (2005-2015 годов) состава Нобелевского комитета "по физике" - интересы ФИЗИКИ он сегодня не представляет .

Привожу обоснование Нобелевской премии по физике 2015 года "За открытие нейтринных осцилляций, показывающее, что нейтрино имеют массу" взятое из сайта Википедия.

В первой части статьи, а также статье "Электронное нейтрино " я доказал невозможность в природе Нейтринных осцилляций как противоречащих законам природы - но видно законы природы не имеют значения для нынешнего состава Нобелевского комитета по физике.

Разные типы нейтрино обладают разными наборами квантовых чисел, которым будет соответствовать разная структура электромагнитных полей и соответственно разная внутренняя энергия - это азы Физики Поля. Превращение одной элементарной частицы в другую противоречит законам электромагнетизма и закону сохранения энергии - это как минимум. Поле не может самопроизвольно стать другим - поля трансформируются по законам поля: электромагнитные поля - по законам электромагнетизма. Ну а то, что превращения одних типов нейтрино в другие кроме того являются издевательством над законом сохранения энергии - к сожалению, это стало нормой поведения некоторых современных "теорий", не утруждающих себя необходимостью считаться с законами природы и с действительностью. Мир капитализма, построенный на Вранье, имеет такую "науку" - какой он достоин.

Нейтрино могут превращаться друг в друга только в результате их реакций (распада или столкновений, при наличии достаточной кинетической энергии).

Если Нобелевский комитет по физике считает, что законы природы отныне перестали действовать, только по тому, что он так думает, и чего хотят сказочники от науки, подсовывая свои математические теории-СКАЗКИ, то кто-нибудь может привести экспериментальные доказательства этого. Вранье авторов экспериментов, выдающих свои гипотезы за законы природы, приниматься в расчет не будет - требуются доказательства, и подтвержденные другими экспериментами.

А теперь посмотрим: что на самом деле увидели в экспериментах, отмеченных Нобелевской премией по физике 2015 года.

4.1 Ошибка 1 Нобелевского комитета по физике 2015.

У каждого нейтринного детектора, в том числе и отмеченных Нобелевской премией по физике (Kamiokande, Super-Kamiokande, SNO), имеется энергетический порог. Если соответствующее нейтрино обладает кинетической энергией ниже энергетического порога, оно пройдет через детектор НЕЗАМЕЧЕННОЙ - а потом появляются псевдонаучные сказки о якобы открытых в эксперименте чудодейственных превращениях, нарушающих законы природы. А всего-то надо было чуточку поработать мозгами.

Энергетические пороги у рассмотренных детекторов, а также классического нейтринного детектора накопления SAGE, приведены в таблице, взятой из Википедии:

У SuperKamiokande в таблице не указана пороговая энергия. Но SuperKamiokande это всего лишь продолжение эксперимента Kamiokande с большим количеством воды и лучшей статистикой. Но, как известно, увеличение количества используемой воды улучшает статистику, но не уменьшает энергетический порог нейтринного детектора, следовательно, его можно считать прежним на уровне 7,5 МэВ.

Я специально добавил еще и классический галлиевый детектор, чтобы было видно во сколько раз его энергетический порог (пороговая энергия) ниже чем у черекновских детекторов, которые берут большим количеством сверх очищенной простой или тяжелой воды, получают большое число регистрируемых событий, могут даже определить направление (откуда прилетела частица), но вот вопрос: какую часть спектра они регистрируют. Выигрыш в количестве обернулся потерей качества. Но даже галлиевый детектор оказался не в состоянии ловить солнечные электронные нейтрино, прошедшие через расплавленную лаву нашей планеты, которую эти нейтрино поддерживают в расплавленном состоянии уже миллиарды лет. Что-же тогда говорить о нейтринных детекторах, у которых энергетический порог в десятки раз выше.

4.2 Ошибка 2 Нобелевского комитета по физике 2015.

Утверждение о том, что Земля является прозрачной для нейтрино - это голословное утверждение Стандартной модели, не соответствующее действительности . Квантовая “теория” и Стандартная модель рассматривают только один вариант взаимодействия, когда происходит реакция с участием элементарной частицы, но природа устроена иначе и в ней имеют место и взаимодействия “не замечаемые” этими математическими построениями.

Любая элементарная частица с ненулевой величиной массы покоя, в том числе и любое нейтрино, обладает электромагнитными полями, внутренняя энергия которых и создает ее массу покоя. Согласно законам классической электродинамики, действие которых в природе еще не отменено решением “Божественного” Нобелевского комитета по физике, электромагнитные поля элементарных частиц все еще взаимодействуют друг с другом. Результатом такого взаимодействия является обмен кинетической энергией, в соответствии с ЗАКОНАМИ ПРИРОДЫ. Следовательно, дипольное электрическое поле любого нейтрино (о существовании которого физика 20 века и не подозревала) взаимодействует со свободными носителями электрического заряда вещества, через которое это нейтрино пролетает. К числу свободных носителей электрического заряда относятся свободные электроны (не в составе атома) и ионы. И те и другие в гигантских количествах содержатся в расплавленной лаве, расположенной внутри нашей планеты под земной корой. Это расплавленное состояние вещества Земли поддерживается потоком кинетической энергии солнечных электронных нейтрино. Поэтому, при прохождении через расплавленную лаву вещества Земли, любые из нейтрино будут постепенно терять свою кинетическую энергию - это следствие классической электродинамики, такой нелюбимой квантовой “теорией” - сказкой.

А теперь посмотрите на пункт 2.1 и вы увидите следствие пункта 2.2: Нейтрино, потерявшее достаточное количество кинетической энергии, при прохождении через расплавленную лаву вещества Земли становится НЕВИДИМЫМ для нейтринного детектора .


Владимир Горунович