Теория электролитической диссоциации. Реферат Истоки теории электролитической диссоциации

В первой половине ХlХ в. Фарадеем введено понятие об электролитах и неэлектролитах.

Электролитами он назвал вещества, растворы и расплавы которых проводят электрический ток, а неэлектролитами - вещества, растворы и расплавы которых не проводят электрического тока.

Проводят электрический ток растворы солей, щелочей, кислот.

Не проводят электрический ток растворы сахара, спирта, глюкозы…

Почему же растворы электролитов проводят электрический ток?

Шведский ученый Сванте Аррениус, изучая электропроводность растворов различных веществ, пришел в 1887 г. к выводу, что причиной электропроводности является наличие в растворе ионов, которые образуются при растворении электролитов в воде.

Процесс распада электролитов на ионы при растворении их в воде или расплавлении называется электролитической диссоциацией.

С. Аррениус придерживался физической теории растворов, т.е. рассматривал процесс растворения веществ как простое распределение частиц растворяемого вещества в воде, при этом не учитывал взаимодействия его с водой и считал, что в растворе находятся свободные ионы. ТЭД объяснила многие явления, связанные со свойствами растворов, но не ответила на вопросы, почему одни вещества являются электролитами, а другие - нет, а также, какую роль в образовании ионов играет растворитель.

В отличии от него русские химики И.А. Каблуков и В.А. Кистяковский применили к объяснению ЭД химическую теорию Д.И. Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. То есть в растворе находятся не свободные, а гидратированные ионы.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 105 0 , благодаря чему молекула имеет угловую форму:

Как правило, легче всего диссоциируют вещества с ионной кристаллической решеткой, так как они уже состоят из готовых ионов. При их растворении диполи воды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита. Между ионами электролита и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор (рис.):

Схема ЭД хлорида натрия на гидратированные ионы

Очевидно, что последовательность процессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

  • А) ориентация молекул - диполей воды около ионов кристалла;
  • Б) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;
  • В) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно процесс можно отразить с помощью уравнения:

NаСl > Nа + + Сl - .

Аналогично диссоциируют и электролиты, в молекулах которых ковалентная полярная связь (например, молекулы хлороводорода НСl), только в этом случае под влиянием диполей воды происходит увеличение полярности связи, а затем разрыв ее с образованием ионов:

НСl > Н + + Сl - .

Св. Аррениус для количественной характеристики ЭД ввел понятие степени ЭД, обозначаемой греческой буквой б.

Степень электролитической диссоциации - это отношение числа молекул электролита, распавшихся на ионы, к общему числу растворенных молекул. электролит неэлектролит электролитическая диссоциация кислота

Степень диссоциации электролита определяется опытным путем и выражается в долях или в процентах. Если б = 0, то вещество совсем не распадается на ионы, оно является неэлектролитом. К неэлектролитам относятся вещества с ковалентными малополярными и неполярными связями, такие, как эфиры, углеводороды, кислород, азот и др

Степень ЭД может иметь значение от 0 до 1 (в процентах от 0 до 100%).

Если б = 1, или 100%, то электролит полностью распадается на ионы, это сильный электролит. К сильным электролитам относятся все растворимые соли, неорганические кислоты (НNО 3 , НСl, НВr, Нl, Н 2 SО 4 , НСlО 4), щелочи (LiОН, NаОН, КОН, Са(ОН) 2 , Ва(ОН) 2).

Слабые электролиты в водных растворах не полностью диссоциируют на ионы (б < 3%). К слабым электролитам относят органические кислоты, многие неорганические (Н 2 S, НF, Н 2 СО 3 , Н 2 SiО 3 , НNО 2 , Н 2 SО 3), основания (за исключением щелочей), NН 4 ОН, вода.

Степень ЭД зависит от природы электролита, температуры (с повышением температуры б увеличивается), концентрации электролита в растворе (разбавление раствора всегда усиливает б).

ВОПРОСЫ ДЛЯ ЗАКРЕПЛЕНИЯ:

  • 1) Почему раствор КОН проводит электрический ток, а раствор глюкозы нет?
  • 2) Является ли соль СаСО 3 электролитом? Почему?
  • 3) Почему при разбавлении раствора электролита степень его диссоциации увеличивается?
  • 4) Докажите, что деление химических связей на ковалентную полярную и ионную условно.
  • 5) Как объяснить электропроводимость водных растворов электролитов?

Основные положения ТЭД

  • 1) При растворении в воде электролиты диссоциируют (распадаются) на положительные и отрицательные ионы.
  • 2) Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока - катоду, и поэтому называются катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока - аноду, и поэтому называются анионами.
  • 3) Причиной диссоциации электролитов в водных растворах является его гидратация, то есть взаимодействие электролита с молекулами воды и разрыв химической связи в нем.
  • 4) ЭД - процесс обратимый для слабых электролитов.
  • 5) Химические свойства растворов электролита определяются свойствами тех ионов, которые они образуют при диссоциации.

По характеру образующихся ионов различают три типа электролитов: кислоты, основания и соли.

Кислотами называют электролиты, которые при диссоциации образуют катионы водорода и анионы кислотного остатка:

НСl> Н + + Сl -

НNО 3 > Н + + NО 3 -

Н 2 SО 4 > 2Н + + SО 4 2-

Для фосфорной и других многоосновных кислот протекает ступенчатая диссоциация:

1-ая ступень - образование дигидрофосфат-ионов:

Н 3 РО 4 - Н + + Н 2 РО 4 - ,

2-ая ступень - образование гидрофосфат-ионов:

Н 2 РО 4 - - Н + + НРО 4 2- ,

3-ая ступень - образование фосфат-ионов:

НРО 4 2- - Н + + РО 4 3- .

Все кислоты объединяет, то что они при диссоциации обязательно образуют катионы водорода. Поэтому общие характерные свойства кислот - кислый вкус, изменение окраски индикаторов и др. - обусловлены именно катионами водорода.

Основаниями называют электролиты, которые при диссоциации образуют катионы металла и анионы гидроксогрупп ОН - :

NаОН - Nа + + ОН - ,

Са(ОН) 2 - Са 2+ + 2ОН -. .

Многокислотные основания диссоциируют ступенчато:

  • 1) Са(ОН) 2 > СаОН + + ОН - ,
  • 2) СаОН + - Са 2+ + ОН - .

Все общие свойства оснований - мылкость на ощупь, изменение окраски индикаторов и др. - обусловлены общими дл всех оснований гидроксид-ионами ОН - .

Солями называют электролиты, которые при диссоциации образуют катионы металла (или аммония NН 4 +) и анионы кислотных остатков:

К 3 РО 4 > 3К + + РО 4 3- ,

NН 4 NО 3 > NН 4 + + NО 3 - .

В отличие от многоосновных кислот и многокислотных оснований соли диссоциируют сразу полностью, а не ступенчато.

Упражнения для самостоятельной работы:

  • 1) Сравните по строению и свойствам:
    • А) Са 0 и Са 2+ ;Б) Н 2 0 и Н + .
  • 2) Запишите уравнения диссоциации следующих электролитов: сульфата железа (lll); карбоната калия; фосфата аммония; нитрата меди (ll); гидроксида бария; фосфорной кислоты. Дайте названия ионов.
  • 3) Какие из перечисленных ниже веществ будут диссоциировать: гидроксид железа (II), гидроксид калия, кремниевая кислота, азотная кислота, оксид серы (IV), сульфид натрия, сульфид железа (II)? Почему? Запишите возможные уравнения диссоциации.
  • 4) В записи уравнений ступенчатой диссоциации серной кислоты для первой ступени используют знак >, а для второй - знак обратимости -. Почему?
  • 5) Пользуясь таблицей растворимости, приведите примеры трех- четырех веществ, которые в растворах образуют сульфат-ион SO 4 2- . запишите уравнения диссоциации этих веществ.

Д/з: ответьте устно на вопросы:

  • 1) Какие вещества относят к электролитам, а какие - к неэлектролитам?
  • 2) Какие из следующих жидкостей проводят электрический ток: этиловый спирт, водный раствор глюкозы, гидроксид натрия, раствор кислорода в воде, карбоната калия, расплав гидроксида калия? Ответ объясните.
  • 3) Что называется ЭД?
  • 4) В чем сущность физической и химической теории растворов?
  • 5) Какие ионы называют гидратированными?
  • 6) Почему одни вещества являются электролитами, а другие нет?
  • 7) Какую роль в образовании ионов играет вода?
  • 8) Что такое степень ЭД? От чего она зависит?
  • 9) Основные положения ТЭД.
  • 10) Дать определение кислот, оснований и солей с точки зрения ТЭД.

Выполните упражнения в рабочих тетрадях письменно:

Составьте уравнения диссоциации веществ в возможных случаях:

NaOH, ZnO, H 2 S, Al(OH) 3 , BaSiO 3 , Cu(NO 3) 2 ,FePO 4 , AlCl 3 , CaSO 4 , SiO 2 , HNO 3 , (NH 4) 2 CO 3.

Водные растворы некоторых веществ являются проводниками электрического тока. Эти вещества относятся к электролитам. Электролитами являются кислоты, основания и соли, расплавы некоторых веществ.

ОПРЕДЕЛЕНИЕ

Процесс распада электролитов на ионы в водных растворах и расплавах под действием электрического тока называется электролитической диссоциацией .

Растворы некоторых веществ в воде не проводят электрический ток. Такие вещества называют неэлектролитами. К ним относятся многие органические соединения, например сахар и спирты.

Теория электролитической диссоциации

Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887 г.). Основные положения теории С. Аррениуса:

— электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы;

— под действием электрического тока положительно заряженные ионы движутся к катоду (катионы), а отрицательно заряженные – к аноду (анионы);

— диссоциация – обратимый процесс

КА ↔ К + + А −

Механизм электролитической диссоциации заключается в ион-дипольном взаимодействии между ионами и диполями воды (рис. 1).

Рис. 1. Электролитическая диссоциация раствора хлорида натрия

Легче всего диссоциируют вещества с ионной связью. Аналогично диссоциация протекает у молекул, образованных по типу полярной ковалентной связи (характер взаимодействия – диполь-дипольный).

Диссоциация кислот, оснований, солей

При диссоциации кислот всегда образуются ионы водорода (H +), а точнее – гидроксония (H 3 O +), которые отвечают за свойства кислот (кислый вкус, действие индикаторов, взаимодействие с основаниями и т.д.).

HNO 3 ↔ H + + NO 3 −

При диссоциации оснований всегда образуются гидроксид-ионы водорода (OH −), ответственные за свойства оснований (изменение окраски индикаторов, взаимодействие с кислотами и т.д.).

NaOH ↔ Na + + OH −

Соли – это электролиты, при диссоциации которых образуются катионы металлов (или катион аммония NH 4 +) и анионы кислотных остатков.

CaCl 2 ↔ Ca 2+ + 2Cl −

Многоосновные кислоты и основания диссоциируют ступенчато.

H 2 SO 4 ↔ H + + HSO 4 − (I ступень)

HSO 4 − ↔ H + + SO 4 2- (II ступень)

Ca(OH) 2 ↔ + + OH − (I ступень)

+ ↔ Ca 2+ + OH −

Степень диссоциации

Среди электролитов различают слабые и сильные растворы. Чтобы охарактеризовать эту меру существует понятие и величина степени диссоциации (). Степень диссоциации – отношение числа молекул, продиссоциировавших на ионы к общему числу молекул. часто выражают в %.

К слабым электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации меньше 3%. К сильным электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации больше 3%. Растворы сильных электролитов не содержат непродиссоциировавших молекул, а процесс ассоциации (объединения) приводит к образованию гидратированных ионов и ионных пар.

На степень диссоциации оказывают особое влияние природа растворителя, природа растворенного вещества, температура (у сильных электролитов с повышением температуры степень диссоциации снижается, а у слабых – проходит через максимум в области температур 60 o С), концентрация растворов, введение в раствор одноименных ионов.

Амфотерные электролиты

Существуют электролиты, которые при диссоциации образуют и H + , и OH − ионы. Такие электролиты называют амфотерными, например: Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Al(OH) 3 , Cr(OH) 3 и т.д.

H + +RO − ↔ ROH ↔ R + + OH −

Ионные уравнения реакций

Реакции в водных растворах электролитов – это реакции между ионами – ионные реакции, которые записывают с помощью ионных уравнений в молекулярной, полной ионной и сокращенной ионной формах. Например:

BaCl 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaCl (молекулярная форма)

Ba 2+ + 2 Cl − + 2 Na + + SO 4 2- = BaSO 4 ↓ + 2 Na + + 2 Cl − (полная ионная форма)

Ba 2+ + SO 4 2- = BaSO 4 ↓ (сокращенная ионная форма)

Водородный показатель pH

Вода – слабый электролит, поэтому процесс диссоциации протекает в незначительной степени.

H 2 O ↔ H + + OH −

К любому равновесию можно применить закон действующих масс и записать выражение для константы равновесия:

K = /

Равновесная концентрация воды – величина постоянная, слеовательно.

K = = K W

Кислотность (основность) водного раствора удобно выражать через десятичный логарифм молярной концентрации ионов водорода, взятый с обратным знаком. Эта величина называется водородным показателем (рН).

Вы никогда не задумывались над тем, почему одни растворы проводят электричество, а другие — нет? Например, всем известно, что лучше не принимать ванну, одновременно укладывая волосы феном. Ведь вода - неплохой проводник электрического тока, и если работающий фен упадет в воду, то не избежать. На самом деле, вода — не такой уж и хороший проводник тока. Есть растворы, которые проводят электричество гораздо лучше. Такие вещества называют электролитами. К ним можно отнести кислоты, щелочи и растворимые в воде соли.

Электролиты — кто они?

Возникает вопрос: почему растворы одних веществ пропускают электричество, а других — нет? Все дело в заряженных частицах — катионах и анионах. При растворении в воде электролиты распадаются на ионы, которые при действии электрического тока движутся в заданном направлении. Положительно заряженные катионы движутся к отрицательному полюсу — катоду, а отрицательно заряженные анионы движутся к положительному полюсу — аноду. Процесс распада вещества на ионы при расплавлении или растворении в воде носит гордое название — электролитическая диссоциация.

Этот термин ввел в обращение шведский ученый С.Аррениус, когда изучал свойства растворов пропускать электричество. Для этого он замыкал через раствор какого-либо вещества и следил загорается лампочка при этом или нет. Если лампочка накаливания загорается — значит раствор проводит электричество, из чего следует вывод, что это вещество является электролитом. Если лампочка остается потухшей — то раствор не проводит электричество, следовательно это вещество — неэлектролит. К неэлетролитам относятся растворы сахара, спирта, глюкозы. А вот расторы поваренной соли, серной кислоты и прекрасно проводят электрический ток, следовательно в них протекает электролитическая диссоциация.

Как протекает диссоциация?

Впоследствии теорию электролитической диссоциации развили и дополнили русские ученые И.А. Каблуков и В.А. Кистяковский, применив к ее обоснованию химическую теорию растворов Д.И. Менделеева.

Эти ученые выяснили, что электролитическая диссоциация кислот, щелочей и солей протекает в следствие гидратации электролита, то есть его взаимодействия с молекулами воды. Ионы, катионы и анионы, образующиеся в результате этого процесса будут гидратированными, то есть связанными с молекулами воды, которые их окружают плотным кольцом. Их свойства значительно отличаются от негидратированных ионов.

Итак, в растворе нитрата стронция Sr(NO3)2, а также в растворах гидроксида цезия CsOH, протекает электролитическая диссоциация. Примеры этого процесса можно выразить следующими :

Sr(NO3)2 = Sr2+ + 2NO3 -,

т.е. при диссоциации одной молекулы нитрата стронция образуется один катион стронция и 2 нитрат-аниона;

CsOH = Cs+ + OH-,

т.е. при диссоциации одной молекулы гидроксида цезия образуется один катион цезия и один гидроксид-анион.

Электролитическая диссоциация кислот происходит аналогично. Для йодоводородной кислоты этот процесс можно выразить следующим уравнением:

т.е. при диссоциации одной молекулы йодоводородной кислоты образуется один катион водорода и один анион йода.

Механизм диссоциации.

Электролитическая диссоциация веществ-электролитов протекает в несколько стадий. Для веществ с ионным типом связи, таких как NaCl, NaOH этот процесс включает в себя три последовательных процесса:

    вначале молекулы воды, имеющие 2 разноименных полюса (положительный и отрицательный) и представляющие собой диполь, ориентируются у ионов кристалла. Положительным полюсом они прикрепляются к отрицательному иону кристалла, и наоборот, отрицательным полюсом — к положительному у ионов кристалла;

    затем происходит гидратация ионов кристалла диполями воды,

    и только после этого гидратированные ионы как бы расходятся в разные стороны и начинают двигаться в растворе или расплаве хаотично до тех пор, пока на них не подействуют электрическим полем.

    Для веществ с таких как HCl и другие кислоты, процесс диссоциации аналогичен, за исключением того, что на начальном этапе происходит переход ковалентной связи в ионную за счет действия диполей воды. Таковы основные моменты теории диссоциации веществ.

Электролитическая диссоциация - процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблукови В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс.

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Основные положения ТЭД (Теории электролитической диссоциации):

Молекулы распадаются на положительно и отрицательно заряженные ионы (простые и сложные).

Под действием электрического тока катионы (положительно заряженные ионы движутся к катоду(-), а анионы (отрицательно заряженные ионы) к аноду(+)

Степень диссоциации зависит от природы вещества и растворителя, концентрации, температуры.

Если степень диссоциации зависит от природы вещества, то можно судить, что существует разграничение между определёнными группами веществ.

Большая степень диссоциации присуща сильным электролитам (большинству оснований, солям, многим кислотам). Стоит учесть, что распад на ионы – обратимая реакция. Так же стоит сказать, что в данной теме не будут разобраны примеры диссоциации двойных и основных солей, их диссоциация описана в теме “соли”.
Примеры сильных электролитов:
NaOH, K 2 SO 4 , HClO 4
Уравнения диссоциации:
NaOH⇄Na + +OH -

K 2 SO 4 ⇄2K + +SO 4 2-

HClO 4 ⇄H + +ClO 4 -

Количественной характеристикой силы электролитов является степень диссоциации (α) – отношение молярной концентрации продиссоциировавшего электролита к его общей молярной концентрации в растворе.

Степень диссоциации выражается в долях единицы или в процентах. Интервал значений – от 0 до 100%.

α = 0% относится к неэлектролитам (диссоциация отсутствует)

0% <α < 100% относится к слабым электролитам (диссоциация неполная)
α = 100% относится к сильным электролитам (полная диссоциация)

Так же стоит помнить про количество ступеней диссоциации, например:
Диссоциация раствора H 2 SO 4

H 2 SO 4 ⇄H + +HSO 4 -

HSO 4 - ⇄H + +SO 4 2-

У каждой ступени диссоциации своя степень диссоциации.
Например, диссоциация солей CuCl 2 , HgCl 2:
CuCl 2 ⇄Cu 2+ +2Cl - диссоциация протекает полностью

А в случае с хлоридом ртути диссоциация идёт неполностью и то не до конца.

HgCl 2 ⇄HgCl + +Cl -

Возвращаясь же к раствору серной кислоты, стоит сказать, что степень диссоциации обеих ступеней разбавленной кислоты гораздо больше, чем у концентрированной. При диссоциации концентрированного раствора очень много молекул вещества и большая концентрация гидроанионов HSO 4 - .

У многоосновных кислот и многокислотных оснований диссоциация идёт в несколько ступеней (в зависимости от основности).

Перечислим сильные и слабые кислоты и приступим к уравнениям ионного обмена:
Сильные кислоты (HCl, HBr, HI, HClO 3 , HBrO 3 , HIO 3 , HClO 4 , H 2 SO 4 , H 2 SeO 4 ,HNO 3 , HMnO 4 , H 2 Cr 2 O 7)

Слабые кислоты (HF, H 2 S, H 2 Se, HClO, HBrO, H 2 SeO 3 , HNO 2 ,H 3 PO 4 , H 4 SiO 4 , HCN, H 2 CO 3 , CH 3 COOH)

Химические реакции в растворах и расплавах электролитов протекают с участием ионов. В таких реакциях степени окисления элементов не изменяются, и сами реакции называются реакциями ионного обмена .

Реакции ионного обмена будут протекать до конца (необратимо) , если образуются малорастворимые или практически нерастворимые вещества (они выпадают в осадок), летучие вещества (выделяются в виде газов) или слабые электролиты (например, вода).

Реакции ионного обмена принято писать в три стадии:
1. Молекулярное уравнение
2. Полное ионное уравнение
3. Сокращенное ионное уравнение
При написании обязательно указывать осадки и газы, а так же руководствоваться таблицей растворимости.

Реакции, где все реагенты и продукты получились растворимые в воде, не протекают.


Несколько примеров:
Na 2 CO 3 +H 2 SO 4 →Na 2 SO 4 +CO 2 +H 2 O

2Na + +CO 3 2- +2H + +SO 4 2- →2Na + +SO 4 2- +CO 2 +H 2 O

CO 3 2- +2H + →CO 2 +H 2 O

Сокращённое ионное уравнение получается с помощью вычёркивания одинаковых ионов из обеих частей полного ионного уравнения.

Если реакция ионного обмена идёт между двумя солями с образованием осадка, то следует брать два хорошо растворимых реагента. То есть, реакция ионного обмена пойдёт если растворимость реагентов будет выше, чем у одного из продуктов.

Ba(NO 3) 2 +Na 2 SO 4 →BaSO 4 ↓+2NaNO 3

Иногда при написании реакций ионного обмена пропускают полное ионное уравнение и сразу пишут сокращенное.

Ba 2+ +SO 4 2- →BaSO 4 ↓

Для получения осадка малорастворимого вещества всегда надо выбирать хорошо растворимые реагенты в их концентрированных растворах.
Например:
2KF+FeCl 2 →FeF 2 ↓+2KCl

Fe 2+ +2F - →FeF 2 ↓

Данные правила подбора реагентов для осаждения продуктов справедливы только для солей.

Примеры реакций с выпадением осадков:
1.Ba(OH) 2 +H 2 SO 4 →BaSO 4 ↓+2H 2 O

Ba 2+ +SO 4 2- →BaSO 4 ↓

2. AgNO 3 +KI→AgI↓+KNO 3

Ag + +I - →AgI↓

3.H 2 S+Pb(NO 3) 2 →PbS↓+2HNO 3

H 2 S+Pb 2+ →PbS↓+2H +

4. 2KOH+FeSO 4 →Fe(OH) 2 ↓+K 2 SO 4

Fe 2+ +2OH - →Fe(OH) 2 ↓

Примеры реакций с выделением газов:
1.CaCO 3 +2HNO 3 →Ca(NO 3) 2 +CO 2 +H 2 O

CaCO 3 +2H + →Ca 2+ +CO 2 +H 2 O

2. 2NH 4 Cl+Ca(OH) 2 →2NH 3 +CaCl 2 +2H 2 O

NH 4 + +OH - →NH 3 +H 2 O

3. ZnS+2HCl→H 2 S+ZnCl 2

ZnS+2H + →H 2 S+Zn 2+

Примеры реакций с образованием слабых электролитов:
1.Mg(CH 3 COO) 2 +H 2 SO 4 →MgSO 4 +2CH 3 COOH

CH 3 COO - +H + →CH 3 COOH

2. HI+NaOH→NaI+H 2 O

H + +OH - →H 2 O

Рассмотрим применение изученного материала на конкретных заданиях, встречающихся на экзаменах:
№1 .Среди веществ: NaCl, Na 2 S, Na 2 SO 4 – в реакцию с раствором Cu(NO3) 2 вступает(-ют)

1) толькоNa 2 S

2) NaCl и Na 2 S

3) Na 2 Sи Na 2 SO 4

4) NaCl и Na 2 SO 4

Под словом “вступают” подразумевается “протекает реакция”, а как было сказано выше, реакция протекает если образовалось нерастворимое или малорастворимое вещество, выделился газ или образовался слабый электролит (вода).

Разберём варианты по очереди.
1) Cu(NO 3) 2 +Na 2 S→CuS↓+2NaNO 3 образовался осадок.
2)NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Протекает только реакция с Na 2 S с образованием осадка

3)С Na 2 S так же будет образование осадка как и в первых двух примерах.
Na 2 SO 4 +Cu(NO 3) 2 ↛CuSO 4 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

4) С Na 2 SO 4 реакция не протекает как в прошлом варианте ответа
NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

Следовательно, подходит 1 вариант ответа.

№2 . Газ выделяется при взаимодействии

1) MgCl 2 и Ba(NO 3) 2

2) Na 2 CO 3 и CaCl 2

3) NH 4 ClиNaOH

4) CuSO 4 и KOH

Слово “газ” в таких заданиях обозначает именно газы и легколетучие соединения.

В заданиях в качестве таких соединений обычно встречаются NH 3 ·H 2 O, H 2 CO 3 (в нормальных условиях проведения реакции разлагается на CO 2 и H 2 O, принято не писать полную формулу угольной кислоты, а сразу расписывать на газ и воду), H 2 S.

Из представленных веществ выше мы не сможем получить H 2 S, потому что отсутствует сульфид-ион во всех веществах. Так же не сможем получить углекислый газ, ибо для его получения из соли нужно добавить кислоту, а в паре с карбонатом натрия находится другая соль.
Мы можем получить газ в 3 варианте ответа.
NH 4 Cl+NaOH→NH 3 +NaCl+H 2 O

Выделился газ с резким запахом.

Следовательно, подходит 3 вариант ответа.

№3 .В реакцию с соляной кислотой вступает

1) нитрат серебра

2) нитрат бария

3) серебро

4) оксид кремния

Среди реагентов есть два электролита, чтобы прошла реакция, нужно, чтоб выделился осадок.
С оксидом кремния соляная кислота не прореагирует, а серебро не вытеснит водород из соляной кислоты.
Ba(NO 3) 2 +2HCl→BaCl 2 +2HNO 3 реакция не будет протекать, так как все продукты – растворимые электролиты
AgNO 3 +HCl→AgCl↓+NaNO 3

Выпадет белый творожистый осадок нитрата серебра
Следовательно, подходит 1 вариант ответа.

Следующий пример задания, в отличие от первых трёх, взят из КИМа ЕГЭ 2017.
Первые три взяты из КИМа ОГЭ 2017

Установите соответствие между формулами веществ и реагентом, с помощью которого можно различить их водные растворы: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.
ФОРМУЛЫ ВЕЩЕСТВ РЕАГЕНТ
А) HNO 3 и H 2 O 1) CaCO 3
Б)KClи NaOH 2) KOH

В)NaClи BaCl 2 3) HCl

Г) AlCl 3 и MgCl 2 4) KNO 3

Чтобы выполнить это задание, следует сначала понять, что под каждой буквой указаны два вещества, которые находятся в одном растворе и нужно подобрать вещество так, чтоб хотя бы одно из них вступило в качественную реакцию с веществом-реагентом, который дан под цифрой.

К раствору азотной кислоты добавим карбонат кальция, углекислый газ станет признаком реакции:
2HNO 3 +CaCO 3 →Ca(NO 3) 2 +CO 2 +H 2 O
Ещё, по логике, карбонат кальция не растворяется в воде, значит, во всех остальных растворах тоже не растворится, следовательно, к признакам реакции можно добавить растворение карбоната кальция, помимо выделения газа.

Раствор под буквой Б можно было бы различить с помощью соляной кислоты под цифрой 3, но только в случае, если было бы разрешено воспользоваться индикатором (фенолфталеин), который бы обесцветился после реакции, ибо произойдёт нейтрализация щёлочи .

Поэтому, можем различитьв растворе OH - ион только при помощи 5 раствора (CuSO 4)
2NaOH+CuSO 4 →Cu(OH) 2 ↓+Na 2 SO 4

Образовались кристаллики голубого цвета на две раствора.

Раствор под буквой В можем различить так же с помощью реактива под номером 5, ибо сульфат-ионы, соединяясь с барием сразу выпадут в белый кристаллический осадок, который не растворим в избытке даже самых сильных кислот.
BaCl 2 +CuSO 4 →CuCl 2 +BaSO 4 ↓

Раствор под буквой Г нетрудно различить с помощью любой щелочи, т.к основания магния и алюминия при протекании реакции сразу выпадут в осадок. Щелочь представлена под цифрой 2

AlCl 3 +3KOH→Al(OH) 3 ↓+3KCl

MgCl 2 +2KOH→Mg(OH) 2 ↓+2KCl

Редактор: Харламова Галина Николаевна

Проводимость веществами электрического тока или отсутствие проводимости можно наблюдать с помощью простого прибора.


Он состоит из угольных стержней (электродов), присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор сахара,то лампочка не загорается. Но она ярко загорится, если их опустить в раствор хлорида натрия.


Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.


Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.


К электролитам относятся кислоты, основания и почти все соли.


К неэлектролитам относятся большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.


Электролиты - проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает ток. Очевидно, чем больше ионов в растворе, тем лучше он проводит электрический ток. Чистая вода электрический ток проводит очень плохо.

Различают сильные и слабые электролиты.

Сильные электролиты при растворении вводе полностью диссоциируют на ионы.


К ним относятся:


1) почти все соли;


2) многие минеральные кислоты, например Н 2 SO 4 , HNO 3 , НСl, HBr, HI, НМnО 4 , НСlО 3 , НСlО 4 ;


3) основания щелочных и щелочноземельных металлов.


Слабые электролиты при растворении в воде лишь частично диссоциируют на ионы.


К ним относятся:


1) почти все органические кислоты;


2) некоторые минеральные кислоты, например H 2 СО 3 , Н 2 S, НNO 2 , HClO, H 2 SiO 3 ;


3) многие основания металлов (кроме оснований щелочных и щелочноземельных металлов), а также NH 4 OH, который можно изображать как гидрат аммиака NH 3 ∙H 2 O.


К слабым электролитам относится вода.


Слабые электролиты не могут дать большой концентрации ионов в растворе.

Основные положения теории электролитической диссоциации.

Распад электролитов на ионы при растворении их в воде называется элекролитической диссоциацией.


Так, хлорид натрия NaСl при растворении в воде полностью распадается на ионы натрия Na + и хлорид-ионы Cl - .

Вода образует ионы водорода Н + и гидроксид-ионы ОН - лишь в очень незначительных количествах.


Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи.


Современное содержание этой теории можно свести к следующим трем положениям:


1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.


Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na + , Mg 2+ , Аl 3+ и т.д.) - или из нескольких атомов - это сложные ионы (NО 3 - , SO 2- 4 , РО З- 4 и т.д.).


2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами.


Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.


3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).


Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КA на катион К + и анион А - в общем виде записывается так:


КА ↔ K + + A -


Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Степень диссоциации.

Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации.


Степенью диссоциации (а) называется отношение числа молекул, распавшихся на ионы (n"), к общему числу растворенных молекул (n):


Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.


Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита, т.е. при разбавлении его водой, степень диссоциации всегда увеличивается. Как правило, увеличивает степень диссоциации и повышение температуры. По степени диссоциации электролиты делят на сильные и слабые.


Рассмотрим смещение равновесия, устанавливающегося между недиссоциированными молекулами и ионами при электролитической диссоциации слабого электролита - уксусной кислоты:


СН 3 СООН ↔ СН 3 СОO - + Н +


При разбавлении раствора уксусной кислоты водой равновесие сместится в сторону образования ионов, - степень диссоциации кислоты возрастает. Наоборот, при упаривании раствора равновесие смещается в сторону образования молекул кислоты - степень диссоциации уменьшается.


Из этого выражения очевидно, что α может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.

Механизм диссоциации

Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды.


Аналогично диссоциируют и электролиты, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы:



Диссоциация полярных молекул может быть полной или частичной.


Таким образом, электролитами являются соединения с ионной или полярной связью - соли, кислоты и основания. И диссоциировать на ионы они могут в полярных растворителях.

Константа диссоциации.

Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.


Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:


A K → A - + K + .


Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как:



где К - константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.


Диапазон констант равновесия для разных реакций очень большой - от 10 -16 до 10 15 . Например, высокое значение К для реакции


означает, что если в раствор, содержащий ионы серебра Ag + ,внести металлическую медь, то в момент достижения равновесия концентрация ионов меди намного больше, чем квадрат концентрации ионов серебра 2 . Напротив, низкое значение К в реакции


говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.


Обратите особое внимание на форму записи выражений для константы равновесия. Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К 1).


Так, для реакции меди с серебром неправильным будет выражение:



Правильной будет следующая форма записи:


Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия. Концентрации меди и серебра определяются их плотностью и не могут быть изменены. Поэтому эти концентрации нет смысла учитывать при расчете константы равновесия.


Аналогично объясняются выражения констант равновесия при растворении AgCl и AgI


Произведение растворимости. Константы диссоциации малорастворимых солей и гидроксидов металлов называются произведением растворимости соответствующих веществ (обозначается ПР).


Для реакции диссоциации воды


выражение константы будет:




Объясняется это тем, что концентрация воды во время реакций в водных растворах изменяется очень незначительно. Поэтому принимается, что концентрация [Н 2 О] остается постоянной и вводится в константу равновесия.


Кислоты, основания и соли с позиций электролитической диссоциации.


С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.


Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода.


Например:


НCl ↔ Н + + С l - ;


СН 3 СООН ↔ Н + + СН 3 СОО -


Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени - по третьей. Поэтому в водном растворе, например, фосфорной кислоты наряду с молекулами Н 3 РО 4 имеются ионы (в последовательно уменьшающихся количествах) Н 2 РО 2- 4 , НРО 2- 4 и РО 3- 4


Н 3 РО 4 ↔ Н + + Н 2 РО - 4 (первая ступень)


Н 2 РО - 4 ↔ Н + + НРO 2- 4 (вторая ступень)


НРО 2- 4 ↔ Н+ PО З- 4 (третья ступень)


Основностъ кислоты определяется числом катионов водорода, которые образуются при диссоциации.


Так, НCl, HNO 3 - одноосновные кислоты - образуется один катион водорода;


Н 2 S, Н 2 СО 3 , Н 2 SO 4 - двухосновные,


Н 3 РО 4 , Н 3 АsО 4 - трехосновные, так как образуются соответственно два и три катиона водорода.


Из четырех атомов водорода, содержащихся в молекуле уксусной кислоты СН 3 СООН, только один, входящий в карбоксильную группу - СООН, способен отщепляться в виде катиона Н + , - уксусная кислота одноосновная.


Двух - и многоосновные кислоты диссоциируют ступенчато (постепенно).


Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы.


Например:


KOH ↔ K + + OH - ;


NH 4 OH ↔ NH + 4 + OH -


Основания,растворимые в воде называются щелочами. Их немного. Это основания щелочных и щелочноземельных металлов: LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , Rа(ОН) 2 , а также NН 4 ОН. Большинство оснований в воде малорастворимо.


Кислотность основания определяется числом его гидроксильных групп (гидроксогрупп). Например, NН 4 ОН - однокислотное основание, Са(ОН) 2 - двухкислотное, Fе(ОН) 3 - трехкислотное и т. д. Двух- и многокислотные основания диссоциируют ступенчато


Ca(ОН) 2 ↔ Са(ОН) + + OH - (первая ступень)


Ca(OH) + ↔ Ca 2+ + OH - (вторая ступень)


Однако имеются электролиты, которые при диссоциации одновременно образуют катионы водорода, и гидроксид - ионы. Эти электролиты называются амфотерными или амфолитами. К ним относятся вода, гидроксиды цинка, алюминия, хрома и ряд других веществ. Вода, например, диссоциирует на ионы Н + и ОН - (в незначительных количествах):

Н 2 O ↔ Н + + ОН -


Следовательно, у нее в равной мере выражены и кислотные свойства, обусловленные наличием катионов водорода Н + , и щелочные свойства, обусловленные наличием ионов ОН - .


Диссоциацию амфотерного гидроксида цинка Zn(ОН) 2 можно выразить уравнением


2ОН - + Zn 2+ + 2Н 2 О ↔ Zn(ОН) 2 + 2Н 2 О ↔ 2- + 2Н +


Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH 4) и анионы кислотных остатков


Например:


(NH 4) 2 SO 4 ↔ 2NH + 4 + SO 2- 4 ;


Na 3 PO 4 ↔ 3Na + + PO 3- 4


Так диссоциируют средние соли. Кислые же и основные соли диссоциируют ступенчато. У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода. Например:


KHSO 4 ↔ K + + HSO - 4



HSO - 4 ↔ H + + SO 2- 4


У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.


Mg(OH)Cl ↔ Mg(OH) + + Cl -